The Semi-convergence of Generalized SSOR Method for Singular Augmented Systems

Recently, Zhang and Lu proposed the generalized symmetric SOR (GSSOR) method for solving the nonsingular augmented systems and studied the convergence of the GSSOR method. In this paper, we prove the semi-convergence of the GSSOR method when it is applied to solve the singular augmented systems, which is the generalization of the GSSOR iteration method.

[1]  Yong-Lin Chen,et al.  Semiconvergence criteria of iterations and extrapolated iterations and constructive methods of semiconvergent iteration matrices , 2005, Appl. Math. Comput..

[2]  J. Navarro-Pedreño Numerical Methods for Least Squares Problems , 1996 .

[3]  Ragnar Winther,et al.  A Preconditioned Iterative Method for Saddlepoint Problems , 1992, SIAM J. Matrix Anal. Appl..

[4]  Luca Bergamaschi,et al.  Preconditioning Indefinite Systems in Interior Point Methods for Optimization , 2004, Comput. Optim. Appl..

[5]  Jean E. Roberts,et al.  Mixed and hybrid finite element methods , 1987 .

[6]  Gene H. Golub,et al.  SOR-like Methods for Augmented Systems , 2001 .

[7]  Guo-Feng Zhang,et al.  On generalized symmetric SOR method for augmented systems , 2008 .

[8]  Apostol T. Vassilev,et al.  Analysis of the Inexact Uzawa Algorithm for Saddle Point Problems , 1997 .

[9]  M. T. Darvishi,et al.  Symmetric SOR method for augmented systems , 2006, Appl. Math. Comput..

[10]  Li Wang,et al.  Weak-convergence theory of quasi-nonnegative splittings for singular matrices , 2003 .

[11]  Ting-Zhu Huang,et al.  A modified SSOR iterative method for augmented systems , 2009 .

[12]  Barry Lee,et al.  Finite elements and fast iterative solvers: with applications in incompressible fluid dynamics , 2006, Math. Comput..

[13]  J. Pasciak,et al.  A preconditioning technique for indefinite systems resulting from mixed approximations of elliptic problems , 1988 .

[14]  G. Golub,et al.  Inexact and preconditioned Uzawa algorithms for saddle point problems , 1994 .

[15]  Bing Zheng,et al.  On semi-convergence of parameterized Uzawa methods for singular saddle point problems☆ , 2009 .

[16]  Beresford N. Parlett,et al.  On generalized successive overrelaxation methods for augmented linear systems , 2005, Numerische Mathematik.

[17]  Åke Björck,et al.  Numerical methods for least square problems , 1996 .

[18]  Ke Wang,et al.  SSOR-like methods for saddle point problems , 2009, Int. J. Comput. Math..

[19]  Zhi-Hao Cao,et al.  Semiconvergence of extrapolated iterative method for singular linear systems , 2004, Appl. Math. Comput..

[20]  Robert J. Plemmons,et al.  Nonnegative Matrices in the Mathematical Sciences , 1979, Classics in Applied Mathematics.

[21]  Li Wang,et al.  On the semiconvergence of extrapolated iterative methods for singular linear systems , 2003 .

[22]  Yongzhong Song,et al.  Semiconvergence of nonnegative splittings for singular matrices , 2000, Numerische Mathematik.

[23]  Gene H. Golub,et al.  Numerical solution of saddle point problems , 2005, Acta Numerica.