On an extremal hypergraph problem related to combinatorial batch codes

Let n , r , k be positive integers such that 3 ? k < n and 2 ? r ? k - 1 . Let m ( n , r , k ) denote the maximum number of edges an r -uniform hypergraph on n vertices can have under the condition that any collection of i edges spans at least i vertices for all 1 ? i ? k . We are interested in the asymptotic nature of m ( n , r , k ) for fixed r and k as n ? ∞ . This problem is related to the forbidden hypergraph problem introduced by Brown, Erd?s, and Sos and very recently discussed in the context of combinatorial batch codes (CBCs). In this short paper we obtain the following results. (i)Using a result due to Erd?s we are able to show m ( n , r , k ) = o ( n r ) for 7 ? k , and 3 ? r ? k - 1 - ? log k ? . This result is best possible with respect to the upper bound on r as we subsequently show through explicit construction that for 6 ? k , and k - ? log k ? ? r ? k - 1 , m ( n , r , k ) = ? ( n r ) .This explicit construction improves on the non-constructive general lower bound obtained by Brown, Erd?s, and Sos for the considered parameter values.(ii)For 2 -uniform CBCs we obtain the following results. (a)We provide exact value of m ( n , 2 , 5 ) for n ? 5 .(b)Using a result of Lazebnik et al. regarding maximum size of graphs with large girth, we improve the existing lower bound on m ( n , 2 , k ) ( ? ( n k + 1 k - 1 ) ) for all k ? 8 and infinitely many values of n .(c)We show m ( n , 2 , k ) = O ( n 1 + 1 ? k 4 ? ) by using a result due to Bondy and Simonovits, and also show m ( n , 2 , k ) = ? ( n 3 2 ) for k = 6 , 7 , 8 by using a result of K?vari, Sos, and Turan.

[1]  Paul Erdös,et al.  On some extremal problems on r-graphs , 1971, Discret. Math..

[2]  Csilla Bujtás,et al.  Combinatorial batch codes: Extremal problems under Hall-type conditions , 2011, Electron. Notes Discret. Math..

[3]  Robin Wilson,et al.  Modern Graph Theory , 2013 .

[4]  P. Erdös On extremal problems of graphs and generalized graphs , 1964 .

[5]  M. Simonovits,et al.  Cycles of even length in graphs , 1974 .

[6]  Douglas R. Stinson,et al.  Combinatorial batch codes , 2009, Adv. Math. Commun..

[7]  P. Erdös On an extremal problem in graph theory , 1970 .

[8]  F. Harary New directions in the theory of graphs , 1973 .

[9]  Csilla Bujtás,et al.  Optimal combinatorial batch codes derived from dual systems , 2011 .

[10]  Csilla Bujtás,et al.  Relaxations of Hall's condition: Optimal batch codes with multiple queries , 2012 .

[11]  Rafail Ostrovsky,et al.  Batch codes and their applications , 2004, STOC '04.

[12]  Jacques Verstraëte,et al.  On Arithmetic Progressions of Cycle Lengths in Graphs , 2000, Combinatorics, Probability and Computing.

[13]  Sushmita Ruj,et al.  Combinatorial batch codes: A lower bound and optimal constructions , 2012, Adv. Math. Commun..

[14]  Richard A. Brualdi,et al.  Combinatorial batch codes and transversal matroids , 2010, Adv. Math. Commun..

[15]  F. Lazebnik,et al.  A new series of dense graphs of high girth , 1995, math/9501231.

[16]  J. Thas,et al.  Finite Generalized Quadrangles , 2009 .

[17]  W. S. Brown,et al.  Some extremal problems on r-graphs , 1971 .

[18]  Csilla Bujtás,et al.  Optimal batch codes: Many items or low retrieval requirement , 2011, Adv. Math. Commun..

[19]  V. Sós,et al.  On a problem of K. Zarankiewicz , 1954 .

[20]  Zoltán Füredi,et al.  On the Number of Edges of Quadrilateral-Free Graphs , 1996, J. Comb. Theory, Ser. B.

[21]  B. Bollobás,et al.  Extremal Graph Theory , 2013 .

[22]  Zoltán Füredi,et al.  Graphs without quadrilaterals , 1983, J. Comb. Theory, Ser. B.

[23]  Oleg Pikhurko,et al.  A note on the Turán function of even cycles , 2012 .

[24]  A. Rényii,et al.  ON A PROBLEM OF GRAPH THEORY , 1966 .

[25]  Csilla Bujtás,et al.  Turán numbers and batch codes , 2013, Discret. Appl. Math..