Volatile electrical switching in a functional polyimide containing electron-donor and -acceptor moieties

A solution-processable functional polyimide (PYTPA-PI), containing triphenylamine-substituted diphenylpyridine moieties (PYTPA, electron donors) and phthalimide moieties (PI, electron acceptors), was synthesized. The copolymer exhibits a high glass transition temperature of 342 °C. A switching device, based on a solution-cast thin film of PYTPA-PI sandwiched between an indium-tin oxide (ITO) bottom electrode and an Al top electrode, exhibits two accessible conductivity states and can be switched from the low-conductivity (OFF) state to the high-conductivity (ON) state, with an ON/OFF current ratio of more than 103, at the threshold voltage of about 2.7 V. The ON state is volatile and relaxes readily to the OFF state. However, it can be electrically sustained by a refreshing voltage pulse of 2 V. The ON state can also be reset to the initial OFF state by a reverse bias of −0.9 V. The ability to write, erase, read, and refresh the electrical states fulfills the functionality of a dynamic random access memor...

[1]  Sang-Hyun Hong,et al.  Novel Digital Nonvolatile Memory Devices Based on Semiconducting Polymer Thin Films , 2007 .

[2]  A. Pal,et al.  (Organic) Switching phenomenon in lateral structures: tuning by gate voltage , 2007 .

[3]  Chunxiang Zhu,et al.  POLYMER MEMORIES: BISTABLE ELECTRICAL SWITCHING AND DEVICE PERFORMANCE , 2007 .

[4]  J. Lai,et al.  Novel poly(pyridine imide) with pendent naphthalene groups: Synthesis and thermal, optical, electrochemical, electrochromic, and protonation characterization , 2007 .

[5]  D. Liaw,et al.  Novel Organosoluble Poly(pyridine−imide) with Pendent Pyrene Group: Synthesis, Thermal, Optical, Electrochemical, Electrochromic, and Protonation Characterization , 2007 .

[6]  C. Guillén,et al.  Thin-Film Polyimide/Indium Tin Oxide Composites for Photovoltaic Applications , 2007 .

[7]  Biswanath Mukherjee,et al.  Electronically Interacting Composite Systems for Electrical Bistability and Memory Applications , 2007 .

[8]  Yan Song,et al.  Nonvolatile polymer memory device based on bistable electrical switching in a thin film of poly(N-vinylcarbazole) with covalently bonded C60. , 2007, Langmuir : the ACS journal of surfaces and colloids.

[9]  M. Chhowalla,et al.  Stable, three layered organic memory devices from C60 molecules and insulating polymers , 2006 .

[10]  Stephen R. Forrest,et al.  Mechanisms for current-induced conductivity changes in a conducting polymer , 2006 .

[11]  Sudip Kumar Batabyal,et al.  Electrical bistability in electrostatic assemblies of CdSe nanoparticles. , 2006, The journal of physical chemistry. B.

[12]  Yan Song,et al.  Synthesis and dynamic random access memory behavior of a functional polyimide. , 2006, Journal of the American Chemical Society.

[13]  D. Kwong,et al.  A dynamic random access memory based on a conjugated copolymer containing electron-donor and -acceptor moieties. , 2006, Angewandte Chemie.

[14]  Dongge Ma,et al.  Memory devices based on lanthanide (Sm3+, Eu3+, Gd3+) complexes. , 2006, Inorganic chemistry.

[15]  B. Pradhan,et al.  Electrical bistability and memory phenomenon in carbon nanotube-conjugated polymer matrixes. , 2006, The journal of physical chemistry. B.

[16]  M. Chhowalla,et al.  Memory effect in thin films of insulating polymer and C60 nanocomposites , 2006 .

[17]  V. I. Berendyaev,et al.  Photoconducting polymer nanocomposites with efficient photogeneration and bipolar transport for optoelectronic applications , 2005 .

[18]  Dim-Lee Kwong,et al.  Bistable resistance switching of poly(N-vinylcarbazole) films for nonvolatile memory applications , 2005 .

[19]  Yang Yang,et al.  Organic Donor–Acceptor System Exhibiting Electrical Bistability for Use in Memory Devices , 2005, Advanced materials.

[20]  Yang Yang,et al.  Electric-field-induced charge transfer between gold nanoparticle and capping 2-naphthalenethiol and organic memory cells , 2005 .

[21]  Charles R. Szmanda,et al.  Programmable polymer thin film and non-volatile memory device , 2004, Nature materials.

[22]  S. Forrest,et al.  A low switching voltage organic-on-inorganic heterojunction memory element utilizing a conductive polymer fuse on a doped silicon substrate , 2004 .

[23]  S. Möller,et al.  Electrochromic conductive polymer fuses for hybrid organic/inorganic semiconductor memories , 2003 .

[24]  Anirban Bandyopadhyay,et al.  Tuning of Organic Reversible Switching via Self‐Assembled Supramolecular Structures , 2003 .

[25]  S. Möller,et al.  A polymer/semiconductor write-once read-many-times memory , 2003, Nature.

[26]  Peter Strohriegl,et al.  Carbazole-containing polymers: synthesis, properties and applications , 2003 .

[27]  Nam-Ju Jo,et al.  Organic electroluminescent devices using fluorine-containing polyimides as a hole transporting layer , 2003 .

[28]  M. Oh-e,et al.  Ultrafast Charge Separation and Recombination Dynamics in a Nanometer Thin Film of Polyimide Observed by Femtosecond Transient Absorption Spectroscopy , 2002 .

[29]  C. Brabec,et al.  Sensitization of photoconductive polyimides for photovoltaic applications , 2001 .

[30]  B. M. Rumyantsev,et al.  Photogeneration and photovoltaic properties of polyimides with extended charge delocalisation in polymer chains , 2001 .

[31]  Y. Z. Lee,et al.  Soluble electroluminescent poly(phenylene vinylene)s with balanced electron- and hole injections. , 2001, Journal of the American Chemical Society.

[32]  Dongge Ma,et al.  Organic Reversible Switching Devices for Memory Applications , 2000 .

[33]  H. Inoue,et al.  Electroluminescent devices based on polymers forming hole‐transporting layers. II. Polyimides containing β‐naphthyldiphenylamine units , 2000 .

[34]  Youngkyoo Kim,et al.  Hole-transporting polyimide for organic electroluminescent display , 2000 .

[35]  Eugene I. Mal'tsev,et al.  Electroluminescent properties of anthracene-containing polyimides , 1999, Optics & Photonics.

[36]  K. L. Tan,et al.  In situ XPS study of the interactions of evaporated copper atoms with neutral and protonated polyaniline films , 1998 .

[37]  Michael A. Meador,et al.  RECENT ADVANCES IN THE DEVELOPMENT OF PROCESSABLE HIGH-TEMPERATURE POLYMERS1 , 1998 .

[38]  K. Horie,et al.  Photoconductivity of a polyimide with an alicyclic diamine: Charge carrier photogeneration in the mixed layer packing arrangement , 1998 .

[39]  Yan-feng Wang,et al.  Electroluminescent devices based on polymers forming hole transporting layers, 1. Polyimides containing o‐tolidine units , 1998 .

[40]  J. P. Gao,et al.  Synthesis, Characterization, and Xerographic Electrical Characteristics of Perylene-Containing Polyimides , 1998 .

[41]  Donal D. C. Bradley,et al.  Space-charge limited conduction with traps in poly(phenylene vinylene) light emitting diodes , 1997 .

[42]  T. Kozawa,et al.  Transient Absorption Spectra of Photoconductive Polyimides and Their Model Compound by Picosecond Pulse Radiolysis , 1997 .

[43]  Franz Faupel,et al.  Diffusion of Metals in Polymers , 1993 .

[44]  J. P. Lafemina Photoconduction in polyimide , 1989 .

[45]  S. Freilich Photoconductivity of donor-loaded polyimides , 1987 .

[46]  H. Grubin The physics of semiconductor devices , 1979, IEEE Journal of Quantum Electronics.

[47]  H. K. Henisch,et al.  Switching in organic polymer films , 1974 .