Circuit Transformations for Quantum Architectures

Quantum computer architectures impose restrictions on qubit interactions. We propose efficient circuit transformations that modify a given quantum circuit to fit an architecture, allowing for any initial and final mapping of circuit qubits to architecture qubits. To achieve this, we first consider the qubit movement subproblem and use the routing via matchings framework to prove tighter bounds on parallel routing. In practice, we only need to perform partial permutations, so we generalize routing via matchings to that setting. We give new routing procedures for common architecture graphs and for the generalized hierarchical product of graphs, which produces subgraphs of the Cartesian product. Secondly, for serial routing, we consider the token swapping framework and extend a 4-approximation algorithm for general graphs to support partial permutations. We apply these routing procedures to give several circuit transformations, using various heuristic qubit placement subroutines. We implement these transformations in software and compare their performance for large quantum circuits on grid and modular architectures, identifying strategies that work well in practice.

[1]  K. Bertels,et al.  Mapping of lattice surgery-based quantum circuits on surface code architectures , 2018, Quantum Science and Technology.

[2]  Steven Herbert On the depth overhead incurred when running quantum algorithms on near-term quantum computers with limited qubit connectivity , 2020, Quantum Inf. Comput..

[3]  Simon J. Devitt,et al.  Implementation of Shor's algorithm on a linear nearest neighbour qubit array , 2004, Quantum Inf. Comput..

[4]  Stephen Brierley,et al.  Efficient implementation of quantum circuits with limited qubit interactions , 2015, Quantum Inf. Comput..

[5]  David J. Rosenbaum Optimal Quantum Circuits for Nearest-Neighbor Architectures , 2012, TQC.

[6]  Selim G. Akl Networks for Sorting , 1985 .

[7]  Susmita Sur-Kolay,et al.  PAQCS: Physical Design-Aware Fault-Tolerant Quantum Circuit Synthesis , 2015, IEEE Transactions on Very Large Scale Integration (VLSI) Systems.

[8]  Jeremy Frank,et al.  Compiling quantum circuits to realistic hardware architectures using temporal planners , 2017, ArXiv.

[9]  Robert Wille,et al.  An Efficient Methodology for Mapping Quantum Circuits to the IBM QX Architectures , 2017, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems.

[10]  F. Chong,et al.  Unitary entanglement construction in hierarchical networks. , 2018, Physical review. A.

[11]  Massoud Pedram,et al.  Layout Optimization for Quantum Circuits with Linear Nearest Neighbor Architectures , 2016, IEEE Circuits and Systems Magazine.

[12]  Frederic T. Chong,et al.  Scheduling physical operations in a quantum information processor , 2006, SPIE Defense + Commercial Sensing.

[13]  Robert Wille,et al.  Determining the minimal number of swap gates for multi-dimensional nearest neighbor quantum circuits , 2015, The 20th Asia and South Pacific Design Automation Conference.

[14]  Silvio Micali,et al.  An O(v|v| c |E|) algoithm for finding maximum matching in general graphs , 1980, 21st Annual Symposium on Foundations of Computer Science (sfcs 1980).

[15]  Dana S. Richards,et al.  New Results on Routing via Matchings on Graphs , 2017, FCT.

[16]  Robert E. Tarjan,et al.  Faster Scaling Algorithms for Network Problems , 1989, SIAM J. Comput..

[17]  C. Monroe,et al.  Large-scale modular quantum-computer architecture with atomic memory and photonic interconnects , 2012, 1208.0391.

[18]  Dmitri Maslov,et al.  Quantum Circuit Placement , 2008, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems.

[19]  Alireza Shafaei,et al.  Qubit placement to minimize communication overhead in 2D quantum architectures , 2014, 2014 19th Asia and South Pacific Design Automation Conference (ASP-DAC).

[20]  Günter Rote,et al.  Tight Exact and Approximate Algorithmic Results on Token Swapping , 2016, ArXiv.

[21]  Louxin Zhang,et al.  Optimal bounds for matching routing on trees , 1997, SODA '97.

[22]  Takehiro Ito,et al.  Swapping labeled tokens on graphs , 2014, Theor. Comput. Sci..

[23]  Dmitri Maslov,et al.  Toward the first quantum simulation with quantum speedup , 2017, Proceedings of the National Academy of Sciences.

[24]  Masaki Nakanishi,et al.  An Efficient Method to Convert Arbitrary Quantum Circuits to Ones on a Linear Nearest Neighbor Architecture , 2009, 2009 Third International Conference on Quantum, Nano and Micro Technologies.

[25]  J I Cirac,et al.  Interaction cost of nonlocal gates. , 2001, Physical review letters.

[26]  Harold W. Kuhn,et al.  The Hungarian method for the assignment problem , 1955, 50 Years of Integer Programming.

[27]  A. Harrow,et al.  Efficient distributed quantum computing , 2012, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[28]  Flemming Nielson,et al.  Principles of Program Analysis , 1999, Springer Berlin Heidelberg.

[29]  Margaret Martonosi,et al.  Noise-Adaptive Compiler Mappings for Noisy Intermediate-Scale Quantum Computers , 2019, ASPLOS.

[30]  Robert Wille,et al.  Compiling SU(4) quantum circuits to IBM QX architectures , 2018, ASP-DAC.

[31]  Noga Alon,et al.  Routing permutations on graphs via matchings , 1993, SIAM J. Discret. Math..

[32]  Dana S. Richards,et al.  Sorting Networks On Restricted Topologies , 2016, SOFSEM.

[33]  Tillmann Miltzow,et al.  Complexity of Token Swapping and Its Variants , 2016, Algorithmica.

[34]  Yoshio Okamoto,et al.  Approximation and Hardness for Token Swapping , 2016 .

[35]  H. Neven,et al.  Characterizing quantum supremacy in near-term devices , 2016, Nature Physics.

[36]  Manfred Kunde Optimal Sorting on Multi-Dimensionally Mesh-Connected Computers , 1987, STACS.

[37]  Gushu Li,et al.  Tackling the Qubit Mapping Problem for NISQ-Era Quantum Devices , 2018, ASPLOS.

[38]  U. Vazirani,et al.  On the complexity and verification of quantum random circuit sampling , 2018, Nature Physics.

[39]  D. Maslov,et al.  Linear depth stabilizer and quantum Fourier transformation circuits with no auxiliary qubits in finite-neighbor quantum architectures , 2007 .

[40]  János Komlós,et al.  An 0(n log n) sorting network , 1983, STOC.

[41]  Richard M. Karp,et al.  A n^5/2 Algorithm for Maximum Matchings in Bipartite Graphs , 1971, SWAT.

[42]  E. Szemerédi,et al.  O(n LOG n) SORTING NETWORK. , 1983 .

[43]  Margaret Martonosi,et al.  Compiler Management of Communication and Parallelism for Quantum Computation , 2015, ASPLOS.

[44]  Rodney Van Meter,et al.  On the Effect of Quantum Interaction Distance on Quantum Addition Circuits , 2008, JETC.

[45]  John Kubiatowicz,et al.  Automated generation of layout and control for quantum circuits , 2007, CF '07.

[46]  Rodney Van Meter,et al.  A Θ( √ n)-depth quantum adder on the 2D NTC quantum computer architecture , 2010, JETC.

[47]  I. Chuang,et al.  Optimal Hamiltonian Simulation by Quantum Signal Processing. , 2016, Physical review letters.

[48]  Colin P. Williams,et al.  Optimal quantum circuits for general two-qubit gates (5 pages) , 2003, quant-ph/0308006.

[49]  Dmitri Maslov,et al.  Experimental comparison of two quantum computing architectures , 2017, Proceedings of the National Academy of Sciences.

[50]  Robert Wille,et al.  Look-ahead schemes for nearest neighbor optimization of 1D and 2D quantum circuits , 2016, 2016 21st Asia and South Pacific Design Automation Conference (ASP-DAC).

[51]  Samuel Kutin,et al.  Computation at a Distance , 2007, Chic. J. Theor. Comput. Sci..

[52]  Robert Wille,et al.  Exact Reordering of Circuit Lines for Nearest Neighbor Quantum Architectures , 2014, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems.

[53]  C. Monroe,et al.  Scaling the Ion Trap Quantum Processor , 2013, Science.

[54]  Robert Wille,et al.  Synthesis of quantum circuits for linear nearest neighbor architectures , 2011, Quantum Inf. Process..

[55]  R. J. Schoelkopf,et al.  Multilayer microwave integrated quantum circuits for scalable quantum computing , 2015, npj Quantum Information.