Parametric Fokker-Planck Equation
暂无分享,去创建一个
H. Zha | Wuchen Li | Haomin Zhou | Shu Liu
[1] S. Amari. Information geometry , 2021, Japanese Journal of Mathematics.
[2] Qiang Liu,et al. Stein Variational Gradient Descent as Moment Matching , 2018, NeurIPS.
[3] Wuchen Li,et al. Ricci curvature for parametric statistics via optimal transport , 2018, Information Geometry.
[4] Montacer Essid,et al. Adaptive optimal transport , 2018, Information and Inference: A Journal of the IMA.
[5] Michele Pavon,et al. The Data‐Driven Schrödinger Bridge , 2018, Communications on Pure and Applied Mathematics.
[6] Wuchen Li,et al. Natural gradient via optimal transport , 2018, Information Geometry.
[7] Wuchen Li,et al. Geometry of probability simplex via optimal transport , 2018 .
[8] Wuchen Li,et al. Natural gradient via optimal transport I , 2018, ArXiv.
[9] Andrew J. Majda,et al. Low-dimensional reduced-order models for statistical response and uncertainty quantification: Barotropic turbulence with topography , 2017 .
[10] Dilin Wang,et al. Stein Variational Gradient Descent: A General Purpose Bayesian Inference Algorithm , 2016, NIPS.
[11] Shun-ichi Amari,et al. Information Geometry and Its Applications , 2016 .
[12] Shakir Mohamed,et al. Variational Inference with Normalizing Flows , 2015, ICML.
[13] F. Otto. THE GEOMETRY OF DISSIPATIVE EVOLUTION EQUATIONS: THE POROUS MEDIUM EQUATION , 2001 .
[14] Shun-ichi Amari,et al. Natural Gradient Works Efficiently in Learning , 1998, Neural Computation.
[15] J. Lafferty. The density manifold and configuration space quantization , 1988 .
[16] Edward Nelson,et al. Quantum Fluctuations (Princeton Series in Physics) , 1985 .
[17] N. Ay,et al. Finite Information Geometry , 2017 .
[18] T. Nieuwenhuizen. What are quantum fluctuations , 2007 .
[19] D. Kinderlehrer,et al. THE VARIATIONAL FORMULATION OF THE FOKKER-PLANCK EQUATION , 1996 .
[20] H. Risken. Fokker-Planck Equation , 1984 .
[21] S. Amari. Natural Gradient Works Eciently in Learning , 2022 .