Parametric Fokker-Planck Equation

[1]  S. Amari Information geometry , 2021, Japanese Journal of Mathematics.

[2]  Qiang Liu,et al.  Stein Variational Gradient Descent as Moment Matching , 2018, NeurIPS.

[3]  Wuchen Li,et al.  Ricci curvature for parametric statistics via optimal transport , 2018, Information Geometry.

[4]  Montacer Essid,et al.  Adaptive optimal transport , 2018, Information and Inference: A Journal of the IMA.

[5]  Michele Pavon,et al.  The Data‐Driven Schrödinger Bridge , 2018, Communications on Pure and Applied Mathematics.

[6]  Wuchen Li,et al.  Natural gradient via optimal transport , 2018, Information Geometry.

[7]  Wuchen Li,et al.  Geometry of probability simplex via optimal transport , 2018 .

[8]  Wuchen Li,et al.  Natural gradient via optimal transport I , 2018, ArXiv.

[9]  Andrew J. Majda,et al.  Low-dimensional reduced-order models for statistical response and uncertainty quantification: Barotropic turbulence with topography , 2017 .

[10]  Dilin Wang,et al.  Stein Variational Gradient Descent: A General Purpose Bayesian Inference Algorithm , 2016, NIPS.

[11]  Shun-ichi Amari,et al.  Information Geometry and Its Applications , 2016 .

[12]  Shakir Mohamed,et al.  Variational Inference with Normalizing Flows , 2015, ICML.

[13]  F. Otto THE GEOMETRY OF DISSIPATIVE EVOLUTION EQUATIONS: THE POROUS MEDIUM EQUATION , 2001 .

[14]  Shun-ichi Amari,et al.  Natural Gradient Works Efficiently in Learning , 1998, Neural Computation.

[15]  J. Lafferty The density manifold and configuration space quantization , 1988 .

[16]  Edward Nelson,et al.  Quantum Fluctuations (Princeton Series in Physics) , 1985 .

[17]  N. Ay,et al.  Finite Information Geometry , 2017 .

[18]  T. Nieuwenhuizen What are quantum fluctuations , 2007 .

[19]  D. Kinderlehrer,et al.  THE VARIATIONAL FORMULATION OF THE FOKKER-PLANCK EQUATION , 1996 .

[20]  H. Risken Fokker-Planck Equation , 1984 .

[21]  S. Amari Natural Gradient Works Eciently in Learning , 2022 .