Sliding mode observer for systems with mismatched parametric uncertainties

A sliding mode observer (SMO) analysis and synthesis framework for systems with mismatched parametric uncertainties is proposed. Stability of the uncertain state estimation error system is addressed using the concept of uniform ultimate bounded stability, also known as practical stability. The design methodology involves linear matrix inequality methods and employs a polytopic description for designing the gain matrices of the SMO. A numerical example illustrates the design methodology and its effectiveness.

[1]  Christopher Edwards,et al.  Sliding mode control : theory and applications , 1998 .

[2]  Vadim I. Utkin,et al.  Sliding Modes in Control and Optimization , 1992, Communications and Control Engineering Series.

[3]  M. I. Castellanos,et al.  Super twisting algorithm-based step-by-step sliding mode observers for nonlinear systems with unknown inputs , 2007, Int. J. Syst. Sci..

[4]  Rolf Isermann,et al.  Fault-Diagnosis Systems , 2005 .

[5]  A. Levant Robust exact differentiation via sliding mode technique , 1998 .

[6]  V. Utkin,et al.  Sliding mode observers. Tutorial , 1995, Proceedings of 1995 34th IEEE Conference on Decision and Control.

[7]  S. Spurgeon,et al.  On the development of discontinuous observers , 1994 .

[8]  Arie Levant,et al.  High-Order Sliding-Mode Observer for Linear Systems with Unknown Inputs , 2006, MED 2006.

[9]  Christopher Edwards,et al.  Sliding mode stabilization of uncertain systems using only output information , 1995 .

[10]  M. Saif,et al.  Novel sliding mode observers for a class of uncertain systems , 2006, 2006 American Control Conference.

[11]  H. Sira-Ramírez,et al.  On the robust design of sliding observers for linear systems , 1994 .

[12]  L. Fridman,et al.  Exact state estimation for linear systems with unknown inputs based on hierarchical super‐twisting algorithm , 2007 .

[13]  H. Choi,et al.  LMI-based sliding-mode observer design method , 2005 .

[14]  A. J. Koshkouei,et al.  Sliding mode state observation for non-linear systems , 2004 .

[15]  J. Gauthier,et al.  A simple observer for nonlinear systems applications to bioreactors , 1992 .

[16]  L. Fridman,et al.  High-Order Sliding-Mode Observation of Linear Systems with Unknown Inputs , 2008 .

[17]  E. Yaz Linear Matrix Inequalities In System And Control Theory , 1998, Proceedings of the IEEE.

[18]  Vadim I. Utkin Principles of identification using sliding regimes , 1981 .

[19]  R. Marino,et al.  Adaptive observers with arbitrary exponential rate of convergence for nonlinear systems , 1995, IEEE Trans. Autom. Control..

[20]  J. Slotine,et al.  On Sliding Observers for Nonlinear Systems , 1986, 1986 American Control Conference.

[21]  D. Luenberger Observing the State of a Linear System , 1964, IEEE Transactions on Military Electronics.

[22]  Mehrdad Saif,et al.  Output Feedback Controller Design for a Class of MIMO Nonlinear Systems Using High-Order Sliding-Mode Differentiators With Application to a Laboratory 3-D Crane , 2008, IEEE Transactions on Industrial Electronics.

[23]  T. Başar,et al.  A New Approach to Linear Filtering and Prediction Problems , 2001 .

[24]  Chee Pin Tan,et al.  An LMI approach for designing sliding mode observers , 2001 .

[25]  S. Żak,et al.  State observation of nonlinear uncertain dynamical systems , 1987 .