Fungal-induced fossil biomineralization

[1]  G. Gadd,et al.  Fungal biorecovery of cerium as oxalate and carbonate biominerals. , 2022, Fungal biology.

[2]  J. Stajich,et al.  Fungi are key players in extreme ecosystems. , 2022, Trends in ecology & evolution.

[3]  G. Gadd,et al.  Solubilization of struvite and biorecovery of cerium by Aspergillus niger , 2022, Applied microbiology and biotechnology.

[4]  G. Gadd Fungal biomineralization , 2021, Current Biology.

[5]  G. Gadd,et al.  Fungal-induced CaCO3 and SrCO3 precipitation: A potential strategy for bioprotection of concrete. , 2021, The Science of the total environment.

[6]  G. Bierbaum,et al.  The complex role of microbial metabolic activity in fossilization , 2021, Biological reviews of the Cambridge Philosophical Society.

[7]  G. Gadd,et al.  Nanoparticle and nanomineral production by fungi , 2021 .

[8]  G. Gadd,et al.  Selective fungal bioprecipitation of cobalt and nickel for multiple‐product metal recovery , 2021, Microbial biotechnology.

[9]  Wenkun Qie,et al.  Microbially Induced Carbonate Precipitation in a Middle Triassic Microbial Mat Deposit from Southwestern China: New Implications for the Formational Process of Micrite , 2021, Journal of Earth Science.

[10]  S. Bengtson,et al.  Fossilized anaerobic and possibly methanogenesis-fueling fungi identified deep within the Siljan impact structure, Sweden , 2021, Communications Earth & Environment.

[11]  A. Czaja,et al.  Cryptic terrestrial fungus-like fossils of the early Ediacaran Period , 2021, Nature Communications.

[12]  G. Gadd,et al.  Role of Protein in Fungal Biomineralization of Copper Carbonate Nanoparticles , 2020, Current Biology.

[13]  P. Szewczyk,et al.  Collagen Fibers in Crocodile Skin and Teeth: A Morphological Comparison Using Light and Scanning Electron Microscopy , 2020, Journal of Bionic Engineering.

[14]  G. Gadd,et al.  Biotransformation of struvite by Aspergillus niger: phosphate release and magnesium biomineralization as glushinskite. , 2020, Environmental microbiology.

[15]  M. Kazemian,et al.  Molecular identification of fungi microfossils in a Neoproterozoic shale rock , 2020, Science Advances.

[16]  S. Ingsriswang,et al.  Culturable mycobiota from Karst caves in China, with descriptions of 20 new species , 2017, Fungal Diversity.

[17]  Qisheng Li,et al.  Environmental fungi and bacteria facilitate lecithin decomposition and the transformation of phosphorus to apatite , 2019, Scientific Reports.

[18]  Shuijin Hu,et al.  Evaluating the potential of charred bone as P hotspot assisted by phosphate-solubilizing bacteria. , 2019, The Science of the total environment.

[19]  E. Javaux,et al.  Early fungi from the Proterozoic era in Arctic Canada , 2019, Nature.

[20]  Erik F. Y. Hom,et al.  Fungi in the Marine Environment: Open Questions and Unsolved Problems , 2019, mBio.

[21]  G. Gadd,et al.  Biotransformation of lanthanum by Aspergillus niger , 2018, Applied Microbiology and Biotechnology.

[22]  H. Schwarcz,et al.  Ultrastructure of Bone: Hierarchical Features from Nanometer to Micrometer Scale Revealed in Focused Ion Beam Sections in the TEM , 2018, Calcified Tissue International.

[23]  P. Freire,et al.  Physicochemical analysis of Permian coprolites from Brazil. , 2018, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.

[24]  S. Bengtson,et al.  Anaerobic consortia of fungi and sulfate reducing bacteria in deep granite fractures , 2017, Nature Communications.

[25]  G. Shi,et al.  Taphonomy and palaeobiology of early Middle Triassic coprolites from the Luoping biota, southwest China: Implications for reconstruction of fossil food webs , 2017 .

[26]  Marco Stampanoni,et al.  Fungus-like mycelial fossils in 2.4-billion-year-old vesicular basalt , 2017, Nature Ecology &Evolution.

[27]  S. Raghukumar The Marine Environment and the Role of Fungi , 2017 .

[28]  Roberto Raiteri,et al.  Supramolecular Organization of Collagen Fibrils in Healthy and Osteoarthritic Human Knee and Hip Joint Cartilage , 2016, PloS one.

[29]  É. Verrecchia,et al.  Role of Fungi in the Biomineralization of Calcite , 2016 .

[30]  Shuijin Hu,et al.  A study of organic acid production in contrasts between two phosphate solubilizing fungi: Penicillium oxalicum and Aspergillus niger , 2016, Scientific Reports.

[31]  G. Gadd,et al.  Fungal Biomineralization of Manganese as a Novel Source of Electrochemical Materials , 2016, Current Biology.

[32]  F. Babonneau,et al.  Calcium-Phosphate Biomineralization Induced by Alkaline Phosphatase Activity in Escherichia coli: Localization, Kinetics, and Potential Signatures in the Fossil Record , 2015, Front. Earth Sci..

[33]  J. Banfield,et al.  Crystallization by particle attachment in synthetic, biogenic, and geologic environments , 2015, Science.

[34]  C. Pott,et al.  Coprolites of Late Triassic carnivorous vertebrates from Poland: an integrative approach , 2015 .

[35]  A. J. Kaufman,et al.  A unifying model for Neoproterozoic–Palaeozoic exceptional fossil preservation through pyritization and carbonaceous compression , 2014, Nature Communications.

[36]  É. Verrecchia,et al.  Unravelling the enigmatic origin of calcitic nanofibres in soils and caves: purely physicochemical or biogenic processes? , 2014 .

[37]  I. Boboescu,et al.  An Acidophilic Bacterial-Archaeal-Fungal Ecosystem Linked to Formation of Ferruginous Crusts and Stalactites , 2014 .

[38]  M. Benton,et al.  CARBONATE RETICULATED RIDGE STRUCTURES FROM THE LOWER MIDDLE TRIASSIC OF THE LUOPING AREA, YUNNAN, SOUTHWESTERN CHINA: GEOBIOLOGIC FEATURES AND IMPLICATIONS FOR EXCEPTIONAL PRESERVATION OF THE LUOPING BIOTA , 2013 .

[39]  W. Dong,et al.  The large mammals from Tuozidong (eastern China) and the Early Pleistocene environmental availability for early human settlements , 2013 .

[40]  J. Schiffbauer,et al.  Preservational modes in the Ediacaran Gaojiashan Lagerstätte: Pyritization, aluminosilicification, and carbonaceous compression , 2012 .

[41]  Guy Leonard,et al.  Marine fungi: their ecology and molecular diversity. , 2012, Annual review of marine science.

[42]  É. Verrecchia,et al.  An Ultrastructural Approach to Analogies between Fungal Structures and Needle Fiber Calcite , 2012 .

[43]  J. Schiffbauer,et al.  Taphonomic study of Ediacaran organic-walled fossils confirms the importance of clay minerals and pyrite in Burgess Shale−type preservation , 2011 .

[44]  C. Kumar,et al.  Antimicrobial activity from the extracts of fungal isolates of soil and dung samples from Kaziranga National Park, Assam, India , 2010 .

[45]  J. Raven,et al.  Geomicrobiology of Eukaryotic Microorganisms , 2010 .

[46]  É. Verrecchia,et al.  Calcitic nanofibres in soils and caves: a putative fungal contribution to carbonatogenesis , 2010 .

[47]  D. Martill,et al.  Probable human hair found in a fossil hyaena coprolite from Gladysvale cave, South Africa , 2009 .

[48]  M. Dadras,et al.  Evidence for an organic origin of pedogenic calcitic nanofibres , 2009 .

[49]  R. Raff,et al.  Embryo fossilization is a biological process mediated by microbial biofilms , 2008, Proceedings of the National Academy of Sciences.

[50]  Geoffrey M Gadd,et al.  Geomycology: biogeochemical transformations of rocks, minerals, metals and radionuclides by fungi, bioweathering and bioremediation. , 2007, Mycological research.

[51]  S. Gunasekaran,et al.  Raman and infrared spectra of carbonates of calcite structure , 2006 .

[52]  A. Agarwal,et al.  Fungi in dinosaurian (Isisaurus) coprolites from the Lameta Formation (Maastrichtian) and its reflection on food habit and environment , 2005 .

[53]  M. Sastry,et al.  Biogenic Calcium Carbonate: Calcite Crystals of Variable Morphology by the Reaction of Aqueous Ca2+ Ions with Fungi , 2004 .

[54]  T. Kuyper,et al.  The role of fungi in weathering , 2004 .

[55]  G. Gadd,et al.  Fungal involvement in bioweathering and biotransformation of rocks and minerals , 2003, Mineralogical Magazine.

[56]  Derek E. G. Briggs,et al.  THE ROLE OF DECAY AND MINERALIZATION IN THE PRESERVATION OF SOFT-BODIED FOSSILS , 2003 .

[57]  K. Chin Analyses of Coprolites Produced by Carnivorous Vertebrates , 2002 .

[58]  R. Petrovich Mechanisms of Fossilization of the Soft-Bodied and Lightly Armored Faunas of the Burgess Shale and of Some Other Classical Localities , 2001 .

[59]  Katja Sterflinger,et al.  Fungi as Geologic Agents , 2000 .

[60]  É. Verrecchia Fungi and Sediments , 2000 .

[61]  Eric P. Verrecchia,et al.  Microbial origin for pedogenic micrite associated with a carbonate paleosol (Champagne, France) , 1999 .

[62]  R. Parkes,et al.  Controls on the formation of authigenic minerals in association with decaying organic matter: an experimental approach , 1999 .

[63]  J. Maniloff,et al.  Nannobacteria: size limits and evidence. , 1997, Science.

[64]  A. Wyss,et al.  Multituberculate and other mammal hair recovered from Palaeogene excreta , 1997, Nature.

[65]  D. Stahl,et al.  Microorganisms and biogeochemical cycles; what can we learn from layered microbial communities? , 1997 .

[66]  É. Verrecchia,et al.  Needle-fiber Calcite: A Critical Review and a Proposed Classification , 1994 .

[67]  David L. Hawksworth,et al.  The fungal dimension of biodiversity: magnitude, significance, and conservation , 1991 .

[68]  P. Allison Konservat-Lagerstätten: cause and classification , 1988, Paleobiology.

[69]  S. Phillips,et al.  Morphology crystallography and origin of needle fiber calcite in quaternary pedogenic calcretes of south australia , 1987 .

[70]  C. A. Roberts,et al.  Discussion * , 1970, Proceedings of the ASIL Annual Meeting.