Bayesian Personalized Feature Interaction Selection for Factorization Machines

Factorization Machines (FMs) are widely used for feature-based collaborative filtering tasks, as they are very effective at modeling feature interactions. Existing FM-based methods usually take all feature interactions into account, which is unreasonable because not all feature interactions are helpful: incorporating useless feature interactions will introduce noise and degrade the recommendation performance. Recently, methods that perform Feature Interaction Selection (FIS) have attracted attention because of their effectiveness at filtering out useless feature interactions. However, they assume that all users share the same feature interactions, which is not necessarily true, especially for collaborative filtering tasks. In this work, we address this issue and study Personalized Feature Interaction Selection (P-FIS) by proposing a Bayesian Personalized Feature Interaction Selection (BP-FIS) mechanism under the Bayesian Variable Selection (BVS) theory. Specifically, we first introduce interaction selection variables with hereditary spike and slab priors for P-FIS. Then, we form a Bayesian generative model and derive the Evidence Lower Bound (ELBO), which can be optimized by an efficient Stochastic Gradient Variational Bayes (SGVB) method to learn the parameters. Finally, because BP-FIS can be seamlessly integrated with different variants of FMs, we implement two FM variants under the proposed BP-FIS. We carry out experiments on three benchmark datasets. The empirical results demonstrate the effectiveness of BP-FIS for selecting personalized interactions and improving the recommendation performance.

[1]  Bamshad Mobasher,et al.  Recommendation with Differential Context Weighting , 2013, UMAP.

[2]  Zhaochun Ren,et al.  Neural Attentive Session-based Recommendation , 2017, CIKM.

[3]  P. McCullagh,et al.  Generalized Linear Models , 1984 .

[4]  Lars Schmidt-Thieme,et al.  Pairwise interaction tensor factorization for personalized tag recommendation , 2010, WSDM '10.

[5]  George Karypis,et al.  Evaluation of Item-Based Top-N Recommendation Algorithms , 2001, CIKM '01.

[6]  Meng Wang,et al.  Visual Classification by ℓ1-Hypergraph Modeling , 2015, IEEE Trans. Knowl. Data Eng..

[7]  Jianhui Chen,et al.  Convex Factorization Machine for Toxicogenomics Prediction , 2017, KDD.

[8]  Miguel Lázaro-Gredilla,et al.  Spike and Slab Variational Inference for Multi-Task and Multiple Kernel Learning , 2011, NIPS.

[9]  Ulrich Paquet,et al.  Xbox movies recommendations: variational bayes matrix factorization with embedded feature selection , 2013, RecSys.

[10]  George Karypis,et al.  FISM: factored item similarity models for top-N recommender systems , 2013, KDD.

[11]  Martin Ester,et al.  Collaborative Denoising Auto-Encoders for Top-N Recommender Systems , 2016, WSDM.

[12]  Jimmy Ba,et al.  Adam: A Method for Stochastic Optimization , 2014, ICLR.

[13]  Ji Zhu,et al.  Variable Selection With the Strong Heredity Constraint and Its Oracle Property , 2010 .

[14]  Weinan Zhang,et al.  BoostFM: Boosted Factorization Machines for Top-N Feature-based Recommendation , 2017, IUI.

[15]  George Karypis,et al.  SLIM: Sparse Linear Methods for Top-N Recommender Systems , 2011, 2011 IEEE 11th International Conference on Data Mining.

[16]  Julian J. McAuley,et al.  Translation-based factorization machines for sequential recommendation , 2018, RecSys.

[17]  Tommi S. Jaakkola,et al.  Maximum-Margin Matrix Factorization , 2004, NIPS.

[18]  Lin Wu,et al.  Robust Subspace Clustering for Multi-View Data by Exploiting Correlation Consensus , 2015, IEEE Transactions on Image Processing.

[19]  Huan Liu,et al.  Unsupervised Personalized Feature Selection , 2018, AAAI.

[20]  Royi Ronen,et al.  Selecting content-based features for collaborative filtering recommenders , 2013, RecSys.

[21]  Yong Yu,et al.  Collaborative personalized tweet recommendation , 2012, SIGIR '12.

[22]  Alexandros Karatzoglou,et al.  Gaussian process factorization machines for context-aware recommendations , 2014, SIGIR.

[23]  Xiao Lin,et al.  Online Compact Convexified Factorization Machine , 2018, WWW.

[24]  Max Welling,et al.  Auto-Encoding Variational Bayes , 2013, ICLR.

[25]  Naonori Ueda,et al.  Higher-Order Factorization Machines , 2016, NIPS.

[26]  Andreas Christmann,et al.  Support vector machines , 2008, Data Mining and Knowledge Discovery Handbook.

[27]  M. de Rijke,et al.  Local Variational Feature-Based Similarity Models for Recommending Top-N New Items , 2020, ACM Trans. Inf. Syst..

[28]  Tsvi Kuflik,et al.  Workshop on information heterogeneity and fusion in recommender systems (HetRec 2010) , 2010, RecSys '10.

[29]  Yehuda Koren,et al.  Factorization meets the neighborhood: a multifaceted collaborative filtering model , 2008, KDD.

[30]  Petros Dellaportas,et al.  On Bayesian model and variable selection using MCMC , 2002, Stat. Comput..

[31]  Naonori Ueda,et al.  Polynomial Networks and Factorization Machines: New Insights and Efficient Training Algorithms , 2016, ICML.

[32]  M. Yuan,et al.  Model selection and estimation in regression with grouped variables , 2006 .

[33]  Dik Lun Lee,et al.  Meta-Graph Based Recommendation Fusion over Heterogeneous Information Networks , 2017, KDD.

[34]  Steffen Rendle,et al.  Learning recommender systems with adaptive regularization , 2012, WSDM '12.

[35]  Lars Schmidt-Thieme,et al.  BPR: Bayesian Personalized Ranking from Implicit Feedback , 2009, UAI.

[36]  Maarten de Rijke,et al.  Top-N Recommendation with High-Dimensional Side Information via Locality Preserving Projection , 2017, SIGIR.

[37]  Jian-Yun Nie,et al.  An Attentive Interaction Network for Context-aware Recommendations , 2018, CIKM.

[38]  Simon J. Godsill,et al.  Sparse linear regression in unions of bases via Bayesian variable selection , 2006, IEEE Signal Processing Letters.

[39]  Chih-Jen Lin,et al.  Field-aware Factorization Machines for CTR Prediction , 2016, RecSys.

[40]  Tat-Seng Chua,et al.  Neural Factorization Machines for Sparse Predictive Analytics , 2017, SIGIR.

[41]  Habshah Midi,et al.  Bayesian variable selection and coefficient estimation in heteroscedastic linear regression model , 2018 .

[42]  Tat-Seng Chua,et al.  Attentional Factorization Machines: Learning the Weight of Feature Interactions via Attention Networks , 2017, IJCAI.

[43]  Liron Levin,et al.  OFF-set: one-pass factorization of feature sets for online recommendation in persistent cold start settings , 2013, RecSys.

[44]  F. Maxwell Harper,et al.  The MovieLens Datasets: History and Context , 2016, TIIS.

[45]  Matthew West,et al.  Bayesian factor regression models in the''large p , 2003 .

[46]  Steffen Rendle,et al.  Factorization Machines , 2010, 2010 IEEE International Conference on Data Mining.

[47]  Heng-Tze Cheng,et al.  Wide & Deep Learning for Recommender Systems , 2016, DLRS@RecSys.

[48]  Matthew D. Hoffman,et al.  Variational Autoencoders for Collaborative Filtering , 2018, WWW.

[49]  Viswanathan Swaminathan,et al.  Feature Selection for FM-Based Context-Aware Recommendation Systems , 2017, 2017 IEEE International Symposium on Multimedia (ISM).

[50]  Yang Wang,et al.  Efficient Mining of Frequent Patterns on Uncertain Graphs , 2019, IEEE Transactions on Knowledge and Data Engineering.

[51]  Jiayu Zhou,et al.  Synergies that Matter: Efficient Interaction Selection via Sparse Factorization Machine , 2016, SDM.

[52]  Francis R. Bach,et al.  Sparse probabilistic projections , 2008, NIPS.

[53]  R. Tibshirani Regression Shrinkage and Selection via the Lasso , 1996 .

[54]  Tong Zhang,et al.  Gradient boosting factorization machines , 2014, RecSys '14.

[55]  Olivier Chapelle,et al.  Field-aware Factorization Machines in a Real-world Online Advertising System , 2017, WWW.

[56]  Dong Yu,et al.  Deep Crossing: Web-Scale Modeling without Manually Crafted Combinatorial Features , 2016, KDD.

[57]  Philip S. Yu,et al.  Multilinear Factorization Machines for Multi-Task Multi-View Learning , 2017, WSDM.

[58]  Meng Wang,et al.  Multimodal Graph-Based Reranking for Web Image Search , 2012, IEEE Transactions on Image Processing.

[59]  Enhong Chen,et al.  Sparse Factorization Machines for Click-through Rate Prediction , 2016, 2016 IEEE 16th International Conference on Data Mining (ICDM).

[60]  Issei Sato,et al.  Reparameterization trick for discrete variables , 2016, ArXiv.

[61]  Lars Schmidt-Thieme,et al.  Fast context-aware recommendations with factorization machines , 2011, SIGIR.

[62]  Steffen Rendle,et al.  Factorization Machines with libFM , 2012, TIST.

[63]  T. J. Mitchell,et al.  Bayesian Variable Selection in Linear Regression , 1988 .