Robust minimum variance beamforming

This paper introduces an extension of minimum variance beamforming that explicitly takes into account variation or uncertainty in the array response. Sources of this uncertainty include imprecise knowledge of the angle of arrival and uncertainty in the array manifold. In our method, uncertainty in the array manifold is explicitly modeled via an ellipsoid that gives the possible values of the array for a particular look direction. We choose weights that minimize the total weighted power output of the array, subject to the constraint that the gain should exceed unity for all array responses in this ellipsoid. The robust weight selection process can be cast as a second-order cone program that can be solved efficiently using Lagrange multiplier techniques. If the ellipsoid reduces to a single point, the method coincides with Capon's method. We describe in detail several methods that can be used to derive an appropriate uncertainty ellipsoid for the array response. We form separate uncertainty ellipsoids for each component in the signal path (e.g., antenna, electronics) and then determine an aggregate uncertainty ellipsoid from these. We give new results for modeling the element-wise products of ellipsoids. We demonstrate the robust beamforming and the ellipsoidal modeling methods with several numerical examples.

[1]  Ali H. Sayed,et al.  Linear Estimation (Information and System Sciences Series) , 2000 .

[2]  Stephen P. Boyd,et al.  sdpsol: a parse/solver for semidefinite programs with matrix structure , 1999 .

[3]  Kristine L. Bell,et al.  A Bayesian approach to robust adaptive beamforming , 2000, IEEE Trans. Signal Process..

[4]  Charles A. Stutt,et al.  A 'best' mismatched filter response for radar clutter discrimination , 1968, IEEE Trans. Inf. Theory.

[5]  James Demmel,et al.  Applied Numerical Linear Algebra , 1997 .

[6]  J. Capon High-resolution frequency-wavenumber spectrum analysis , 1969 .

[7]  Zhi-Quan Luo,et al.  Robust adaptive beamforming using worst-case performance optimization: a solution to the signal mismatch problem , 2003, IEEE Trans. Signal Process..

[8]  Jian Li,et al.  Robust Capon beamforming , 2002, Conference Record of the Thirty-Sixth Asilomar Conference on Signals, Systems and Computers, 2002..

[9]  Bernard Widrow,et al.  A comparison of adaptive algorithms based on the methods of steepest descent and random search , 1976 .

[10]  Henry Wolkowicz,et al.  Handbook of Semidefinite Programming , 2000 .

[11]  Arkadi Nemirovski,et al.  Robust solutions of uncertain linear programs , 1999, Oper. Res. Lett..

[12]  Zhi-Quan Luo,et al.  Robust adaptive beamforming using worst-case performance optimization via Second-Order Cone programming , 2002, 2002 IEEE International Conference on Acoustics, Speech, and Signal Processing.

[13]  Z. Luo,et al.  Robust Adaptive Beamforming Based on Worst‐Case Performance Optimization , 2005 .

[14]  A. Booth Numerical Methods , 1957, Nature.

[15]  A.B. Gershman,et al.  Robust adaptive beamforming using worst-case performance optimization , 2003, The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003.

[16]  Stephen P. Boyd,et al.  Antenna array pattern synthesis via convex optimization , 1997, IEEE Trans. Signal Process..

[17]  Jian Li,et al.  Doubly constrained robust Capon beamformer , 2004, IEEE Transactions on Signal Processing.

[18]  S. Haykin,et al.  Adaptive Filter Theory , 1986 .

[19]  Åke Björck,et al.  Numerical Methods , 1995, Handbook of Marine Craft Hydrodynamics and Motion Control.

[20]  Jian Li,et al.  On robust Capon beamforming and diagonal loading , 2003, IEEE Trans. Signal Process..

[21]  L. J. Griffiths,et al.  A unified approach to the design of linear constraints in minimum variance adaptive beamformers , 1992 .

[22]  Laurent El Ghaoui,et al.  Robust Solutions to Least-Squares Problems with Uncertain Data , 1997, SIAM J. Matrix Anal. Appl..

[23]  Charles R. Johnson,et al.  Topics in Matrix Analysis , 1991 .

[24]  Jeffrey L. Krolik,et al.  The performance of matched-field beamformers with Mediterranean vertical array data , 1996, IEEE Trans. Signal Process..

[25]  Arkadi Nemirovski,et al.  Robust Convex Optimization , 1998, Math. Oper. Res..

[26]  Jeffrey L. Krolik,et al.  Relationships between adaptive minimum variance beamforming and optimal source localization , 2000, IEEE Trans. Signal Process..

[27]  E. Yaz Linear Matrix Inequalities In System And Control Theory , 1998, Proceedings of the IEEE.

[28]  Dimitri P. Bertsekas,et al.  Constrained Optimization and Lagrange Multiplier Methods , 1982 .

[29]  H. Vincent Poor,et al.  On minimax robustness: A general approach and applications , 1984, IEEE Trans. Inf. Theory.

[30]  W. Gander Least squares with a quadratic constraint , 1980 .

[31]  J. Krolik Matched‐field minimum variance beamforming in a random ocean channel , 1992 .

[32]  Stephen P. Boyd,et al.  An ellipsoidal approximation to the Hadamard product of ellipsoids , 2002, 2002 IEEE International Conference on Acoustics, Speech, and Signal Processing.

[33]  Allen L. Soyster,et al.  Technical Note - Convex Programming with Set-Inclusive Constraints and Applications to Inexact Linear Programming , 1973, Oper. Res..

[34]  S. Q. Wu,et al.  A new robust beamforming method with antennae calibration errors , 1999, WCNC. 1999 IEEE Wireless Communications and Networking Conference (Cat. No.99TH8466).

[35]  Don H. Johnson,et al.  Array Signal Processing: Concepts and Techniques , 1993 .

[36]  Aharon Ben-Tal,et al.  Lectures on modern convex optimization , 1987 .

[37]  Barry D. Van Veen Minimum variance beamforming with soft response constraints , 1991, IEEE Trans. Signal Process..

[38]  G. Golub,et al.  Quadratically constrained least squares and quadratic problems , 1991 .

[39]  Stephen Boyd,et al.  Robust Beamforming in GPS Arrays , 2002 .

[40]  Stephen P. Boyd,et al.  Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.

[41]  A. Kurzhanski,et al.  Ellipsoidal Calculus for Estimation and Control , 1996 .

[42]  Stephen P. Boyd,et al.  Determinant Maximization with Linear Matrix Inequality Constraints , 1998, SIAM J. Matrix Anal. Appl..

[43]  Arkadi Nemirovski,et al.  Lectures on modern convex optimization - analysis, algorithms, and engineering applications , 2001, MPS-SIAM series on optimization.

[44]  B. Widrow,et al.  Parallel spatial processing: A cure for signal cancellation in adaptive arrays , 1986 .

[45]  Stephen P. Boyd,et al.  Linear Matrix Inequalities in Systems and Control Theory , 1994 .