Pulses, patterns and paths: neurobiology of acoustic behaviour in crickets
暂无分享,去创建一个
[1] D. Otto. Untersuchungen zur zentralnervösen Kontrolle der Lauterzeugung von Grillen , 1971, Zeitschrift für vergleichende Physiologie.
[2] John F. Stout,et al. Attractiveness of the maleAcheta domestica calling song to females , 1988, Journal of Comparative Physiology A.
[3] E. Staudacher. Sensory responses of descending brain neurons in the walking cricket, Gryllus bimaculatus , 2001, Journal of Comparative Physiology A.
[4] Berthold Hedwig,et al. Complex auditory behaviour emerges from simple reactive steering , 2004, Nature.
[5] B. Hedwig,et al. Identified descending brain neurons control different stridulatory motor patterns in an acridid grasshopper , 1997, Journal of Comparative Physiology A.
[6] J. Thorson,et al. Auditory behavior of the cricket , 2004, Journal of Comparative Physiology A.
[7] Berthold Hedwig,et al. Corollary Discharge Inhibition of Ascending Auditory Neurons in the Stridulating Cricket , 2003, The Journal of Neuroscience.
[8] J A Doherty,et al. A new microcomputer-based method for measuring walking phonotaxis in field crickets (Gryllidae). , 1987, The Journal of experimental biology.
[9] A. V. Popov,et al. Phonotactic behavior of crickets , 2004, Journal of comparative physiology.
[10] R. M. Hennig. Acoustic feature extraction by cross-correlation in crickets? , 2003, Journal of Comparative Physiology A.
[11] A Nabatiyan,et al. Temporal pattern recognition based on instantaneous spike rate coding in a simple auditory system. , 2003, Journal of neurophysiology.
[12] B. Hedwig,et al. Singing and hearing: neuronal mechanisms of acoustic communication in Orthopterans , 2001 .
[13] Franz Huber,et al. Neural Correlates of Orthopteran and Cicada Phonotaxis , 1983 .
[14] B. Kimmerle,et al. Physiological and morphological characterization of honeybee olfactory neurons combining electrophysiology, calcium imaging and confocal microscopy , 2003, Journal of Comparative Physiology A.
[15] W. Kutsch,et al. Evidence for spontaneous song production independent of head ganglia inGryllus campestris L. , 1972, Journal of Comparative Physiology.
[16] Tympanic membrane oscillations and auditory receptor activity in the stridulating cricket Gryllus bimaculatus. , 2001, The Journal of experimental biology.
[17] John A. Doherty,et al. Trade-off phenomena in calling song recognition and phonotaxis in the cricket,Gryllus bimaculatus (Orthoptera, Gryllidae) , 1985, Journal of Comparative Physiology A.
[18] Berthold Hedwig,et al. The Cellular Basis of a Corollary Discharge , 2006, Science.
[19] Hedwig,et al. Neurochemical control of cricket stridulation revealed by pharmacological microinjections into the brain. , 1999, The Journal of experimental biology.
[20] D. Tank,et al. In Vivo Ca2+ Dynamics in a Cricket Auditory Neuron: An Example of Chemical Computation , 1994, Science.
[21] O. Grüsser,et al. Interaction of efferent and afferent signals in visual perception. A history of ideas and experimental paradigms. , 1986, Acta psychologica.
[22] C. Wiersma,et al. INTERNEURONS COMMANDING SWIMMERET MOVEMENTS IN THE CRAYFISH, PROCAMBARUS CLARKI (GIRARD). , 1964, Comparative biochemistry and physiology.
[23] R. M. Hennig. Ascending auditory interneurons in the cricketTeleogryllus commodus (Walker): comparative physiology and direct connections with afferents , 1988, Journal of Comparative Physiology A.
[24] A. Selverston,et al. Synaptic connectivity between cricket auditory interneurons as studied by selective photoinactivation , 1985, The Journal of neuroscience : the official journal of the Society for Neuroscience.
[25] D. von Helversen,et al. Acoustic pattern recognition and orientation in orthopteran insects: parallel or serial processing? , 1995, Journal of Comparative Physiology A.
[26] Berthold Hedwig,et al. A corollary discharge maintains auditory sensitivity during sound production , 2002, Nature.
[27] Franz Huber,et al. Primary auditory neurons in crickets: Physiology and central projections , 1980, Journal of comparative physiology.
[28] Berthold Hedwig,et al. Auditory orientation in crickets: Pattern recognition controls reactive steering , 2005, Proceedings of the National Academy of Sciences of the United States of America.
[29] R. Hoy,et al. Initiation of behavior by single neurons: the role of behavioral context. , 1984, Science.
[30] Franz Huber,et al. Intracellular recording and staining of cricket auditory interneurons (Gryllus campestris L.,Gryllus bimaculatus DeGeer) , 1978, Journal of comparative physiology.
[31] K. Schildberger,et al. Temporal selectivity of identified auditory neurons in the cricket brain , 2004, Journal of Comparative Physiology A.
[32] F. Huber,et al. Sound localisation in crickets , 1994, Journal of Comparative Physiology A.
[33] K. D. Roeder. Aspects of the noctuid tympanic nerve response having significance in the avoidance of bats , 1964 .
[34] B. Hedwig,et al. A cephalothoracic command system controls stridulation in the acridid grasshopper Omocestus viridulus L. , 1994, Journal of neurophysiology.
[35] Michael J. Berridge,et al. Neuronal Calcium Signaling Review , 1998 .
[36] F. Huber. The role of the central nervous system in Orthoptera during coordination and control of stridulation , 1964 .
[37] K. Oka,et al. Dendritic calcium accumulation regulates wind sensitivity via short-term depression at cercal sensory-to-giant interneuron synapses in the cricket. , 2001, Journal of neurobiology.
[38] J. Doherty. Temperature coupling and trade-off phenomena in the acoustic communication system of the cricket, Gryllus bimaculatus De Geer (Gryllidae) , 1985 .
[39] S. Takagi,et al. Natural History , 2019, Nature.
[40] E. Holst,et al. Das Reafferenzprinzip , 2004, Naturwissenschaften.
[41] G. Pollack,et al. Phonotaxis in flying crickets: Neural correlates , 1981 .
[42] G. Fraenkel,et al. The Orientation of Animals, Kineses, Taxes and Compass Reactions, , 1941 .
[43] Franz Huber,et al. Untersuchungen über die Funktion des Zentralnervensystems und insbesondere des Gehirnes bei der Fortbewegung und der Lauterzeugung der Grillen , 2004, Zeitschrift für vergleichende Physiologie.
[44] J. Poulet,et al. A corollary discharge mechanism modulates central auditory processing in singing crickets. , 2003, Journal of neurophysiology.
[45] K. Schildberger,et al. Brain Neurones Involved in the Control of Walking in the Cricket Gryllus Bimaculatus , 1992 .
[46] Franz Huber,et al. Auditory behavior of the cricket , 2004, Journal of comparative physiology.
[47] F. Huber,et al. 14. Central Auditory Pathway: Neuronal Correlates of Phonotactic Behavior , 2019, Cricket Behavior and Neurobiology.
[48] Gerald S. Pollack,et al. Discrimination of calling song models by the cricket,Teleogryllus oceanicus: the influence of sound direction on neural encoding of the stimulus temporal pattern and on phonotactic behavior , 1986, Journal of Comparative Physiology A.
[49] Jack W. Bradbury,et al. Principles of Animal Communication , 1998 .
[50] R. Hoy. Acoustic communication in crickets: a model system for the study of feature detection. , 1978, Federation proceedings.
[51] Harald Nocke,et al. Physiological aspects of sound communication in crickets (Gryllus campestris L.) , 1972, Journal of comparative physiology.
[52] K. R. Weiss,et al. The command neuron concept , 1978, Behavioral and Brain Sciences.
[53] Barbara Schmitz,et al. Phonotaxis inGryllus campestris L. (Orthoptera, Gryllidae) , 2004, Journal of comparative physiology.
[54] G. Pollack,et al. Selective attention in an insect auditory neuron , 1988, The Journal of neuroscience : the official journal of the Society for Neuroscience.
[55] Eckehard Eibl. Morphology of the sense organs in the proximal parts of the tibiae ofGryllus campestrisL. andGryllus bimaculatus deGeer (Insecta, Ensifera) , 1978, Zoomorphologie.
[56] Franz Huber,et al. Processing of sound signals by six types of neurons in the prothoracic ganglion of the cricket,Gryllus campestris L. , 1982, Journal of comparative physiology.
[57] Harald Nocke,et al. Biophysik der Schallerzeugung durch die Vorderflügel der Grillen , 1971, Zeitschrift für vergleichende Physiologie.
[58] Barbara Schmitz. Phonotaxis inGryllus campestris L. (Orthoptera, Gryllidae) , 1985, Journal of Comparative Physiology A.
[59] Franz Huber,et al. Auditory behavior of the cricket , 1981, Journal of comparative physiology.
[60] F. Clarac,et al. Invertebrate presynaptic inhibition and motor control , 1996, Experimental Brain Research.
[61] M Egelhaaf,et al. In vivo imaging of calcium accumulation in fly interneurons as elicited by visual motion stimulation. , 1992, Proceedings of the National Academy of Sciences of the United States of America.
[62] Alexander Borst,et al. Separation of voltage- and ligand-gated calcium influx in locust neurons by optical imaging , 1999, Neuroscience Letters.
[63] John Thorson,et al. Auditory behavior of the cricket , 2004, Journal of Comparative Physiology A.
[64] Hans Scharstein,et al. Cricket phonotaxis: localization depends on recognition of the calling song pattern , 1989, Journal of Comparative Physiology A.
[65] Christof Koch,et al. Biophysics of Computation: Information Processing in Single Neurons (Computational Neuroscience Series) , 1998 .
[66] M. Berridge. Neuronal Calcium Signaling , 1998, Neuron.
[67] Hoy Rr,et al. Acoustic communication in crickets: a model system for the study of feature detection. , 1978 .
[68] D. Bentley. Control of cricket song patterns by descending interneurons , 2004, Journal of comparative physiology.
[69] Alexander Borst,et al. Different mechanisms of calcium entry within different dendritic compartments. , 2002, Journal of neurophysiology.
[70] B Hedwig,et al. Control of cricket stridulation by a command neuron: efficacy depends on the behavioral state. , 2000, Journal of neurophysiology.
[71] W. J. Heitler,et al. Fifty years of a command neuron: the neurobiology of escape behavior in the crayfish , 1999, Trends in Neurosciences.
[72] B Hedwig,et al. Mechanisms underlying phonotactic steering in the cricket Gryllus bimaculatus revealed with a fast trackball system , 2005, Journal of Experimental Biology.
[73] H. Markl. Acoustic and vibrational communication in insects , 1985, Insectes Sociaux.
[74] R. Sperry. Neural basis of the spontaneous optokinetic response produced by visual inversion. , 1950, Journal of comparative and physiological psychology.
[75] M. Hörner,et al. The function of auditory neurons in cricket phonotaxis , 2004, Journal of Comparative Physiology A.
[76] G. Boyan. Auditory neurones in the brain of the cricketGryllus bimaculatus (De Geer) , 2004, Journal of comparative physiology.
[77] Barbara Webb,et al. Robots in invertebrate neuroscience , 2002, Nature.
[78] T. J. Walker,et al. Phonotaxis of Crickets in Flight: Attraction of Male and Female Crickets to Male Calling Songs , 1973, Science.
[79] K. Grant,et al. Corollary discharge inhibition and preservation of temporal information in a sensory nucleus of mormyrid electric fish , 1989, The Journal of neuroscience : the official journal of the Society for Neuroscience.
[80] J. Regen. Über die Anlockung des Weibchens von Gryllus campestris L. durch telephonisch übertragene Stridulationslaute des Männchens , 1913, Pflüger's Archiv für die gesamte Physiologie des Menschen und der Tiere.
[81] M. Hörner,et al. The function of auditory neurons in cricket phonotaxis , 1988, Journal of Comparative Physiology A.
[82] Karin Michel. Das tympanalorgan von Gryllus bimaculatus Degeer (saltatoria, gryllidae) , 1974, Zeitschrift für Morphologie der Tiere.