Pulses, patterns and paths: neurobiology of acoustic behaviour in crickets

Crickets use acoustic communication for pair formation. Males sing with rhythmical movements of their wings and the mute females approach the singing males by phonotaxis. Females walking on a trackball rapidly steer towards single sound pulses when exposed to split-song paradigms. Their walking path emerges from consecutive reactive steering responses, which show no temporal selectivity. Temporal pattern recognition is tuned to the species-specific syllable rate and gradually changes the gain of auditory steering. If pattern recognition is based on instantaneous discharge rate coding, then the tuning to the species-specific song pattern may already be present at the level of thoracic interneurons. During the processing of song patterns, changes in cytosolic Ca2+ concentrations occur in phase with the chirp rhythm in the local auditory interneurone. Male singing behaviour is controlled by command neurons descending from the brain. The neuropil controlling singing behaviour is located in the anterior protocerebrum next to the mushroom bodies. Singing behaviour is released by injection of cholinergic agonists and inhibited by γ-butyric acid (GABA). During singing, the sensitivity of the peripheral auditory system remains unchanged but a corollary discharge inhibits auditory processing in afferents and interneurons within the prothoracic auditory neuropil and prevents the auditory neurons from desensitisation.

[1]  D. Otto Untersuchungen zur zentralnervösen Kontrolle der Lauterzeugung von Grillen , 1971, Zeitschrift für vergleichende Physiologie.

[2]  John F. Stout,et al.  Attractiveness of the maleAcheta domestica calling song to females , 1988, Journal of Comparative Physiology A.

[3]  E. Staudacher Sensory responses of descending brain neurons in the walking cricket, Gryllus bimaculatus , 2001, Journal of Comparative Physiology A.

[4]  Berthold Hedwig,et al.  Complex auditory behaviour emerges from simple reactive steering , 2004, Nature.

[5]  B. Hedwig,et al.  Identified descending brain neurons control different stridulatory motor patterns in an acridid grasshopper , 1997, Journal of Comparative Physiology A.

[6]  J. Thorson,et al.  Auditory behavior of the cricket , 2004, Journal of Comparative Physiology A.

[7]  Berthold Hedwig,et al.  Corollary Discharge Inhibition of Ascending Auditory Neurons in the Stridulating Cricket , 2003, The Journal of Neuroscience.

[8]  J A Doherty,et al.  A new microcomputer-based method for measuring walking phonotaxis in field crickets (Gryllidae). , 1987, The Journal of experimental biology.

[9]  A. V. Popov,et al.  Phonotactic behavior of crickets , 2004, Journal of comparative physiology.

[10]  R. M. Hennig Acoustic feature extraction by cross-correlation in crickets? , 2003, Journal of Comparative Physiology A.

[11]  A Nabatiyan,et al.  Temporal pattern recognition based on instantaneous spike rate coding in a simple auditory system. , 2003, Journal of neurophysiology.

[12]  B. Hedwig,et al.  Singing and hearing: neuronal mechanisms of acoustic communication in Orthopterans , 2001 .

[13]  Franz Huber,et al.  Neural Correlates of Orthopteran and Cicada Phonotaxis , 1983 .

[14]  B. Kimmerle,et al.  Physiological and morphological characterization of honeybee olfactory neurons combining electrophysiology, calcium imaging and confocal microscopy , 2003, Journal of Comparative Physiology A.

[15]  W. Kutsch,et al.  Evidence for spontaneous song production independent of head ganglia inGryllus campestris L. , 1972, Journal of Comparative Physiology.

[16]  Tympanic membrane oscillations and auditory receptor activity in the stridulating cricket Gryllus bimaculatus. , 2001, The Journal of experimental biology.

[17]  John A. Doherty,et al.  Trade-off phenomena in calling song recognition and phonotaxis in the cricket,Gryllus bimaculatus (Orthoptera, Gryllidae) , 1985, Journal of Comparative Physiology A.

[18]  Berthold Hedwig,et al.  The Cellular Basis of a Corollary Discharge , 2006, Science.

[19]  Hedwig,et al.  Neurochemical control of cricket stridulation revealed by pharmacological microinjections into the brain. , 1999, The Journal of experimental biology.

[20]  D. Tank,et al.  In Vivo Ca2+ Dynamics in a Cricket Auditory Neuron: An Example of Chemical Computation , 1994, Science.

[21]  O. Grüsser,et al.  Interaction of efferent and afferent signals in visual perception. A history of ideas and experimental paradigms. , 1986, Acta psychologica.

[22]  C. Wiersma,et al.  INTERNEURONS COMMANDING SWIMMERET MOVEMENTS IN THE CRAYFISH, PROCAMBARUS CLARKI (GIRARD). , 1964, Comparative biochemistry and physiology.

[23]  R. M. Hennig Ascending auditory interneurons in the cricketTeleogryllus commodus (Walker): comparative physiology and direct connections with afferents , 1988, Journal of Comparative Physiology A.

[24]  A. Selverston,et al.  Synaptic connectivity between cricket auditory interneurons as studied by selective photoinactivation , 1985, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[25]  D. von Helversen,et al.  Acoustic pattern recognition and orientation in orthopteran insects: parallel or serial processing? , 1995, Journal of Comparative Physiology A.

[26]  Berthold Hedwig,et al.  A corollary discharge maintains auditory sensitivity during sound production , 2002, Nature.

[27]  Franz Huber,et al.  Primary auditory neurons in crickets: Physiology and central projections , 1980, Journal of comparative physiology.

[28]  Berthold Hedwig,et al.  Auditory orientation in crickets: Pattern recognition controls reactive steering , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[29]  R. Hoy,et al.  Initiation of behavior by single neurons: the role of behavioral context. , 1984, Science.

[30]  Franz Huber,et al.  Intracellular recording and staining of cricket auditory interneurons (Gryllus campestris L.,Gryllus bimaculatus DeGeer) , 1978, Journal of comparative physiology.

[31]  K. Schildberger,et al.  Temporal selectivity of identified auditory neurons in the cricket brain , 2004, Journal of Comparative Physiology A.

[32]  F. Huber,et al.  Sound localisation in crickets , 1994, Journal of Comparative Physiology A.

[33]  K. D. Roeder Aspects of the noctuid tympanic nerve response having significance in the avoidance of bats , 1964 .

[34]  B. Hedwig,et al.  A cephalothoracic command system controls stridulation in the acridid grasshopper Omocestus viridulus L. , 1994, Journal of neurophysiology.

[35]  Michael J. Berridge,et al.  Neuronal Calcium Signaling Review , 1998 .

[36]  F. Huber The role of the central nervous system in Orthoptera during coordination and control of stridulation , 1964 .

[37]  K. Oka,et al.  Dendritic calcium accumulation regulates wind sensitivity via short-term depression at cercal sensory-to-giant interneuron synapses in the cricket. , 2001, Journal of neurobiology.

[38]  J. Doherty Temperature coupling and trade-off phenomena in the acoustic communication system of the cricket, Gryllus bimaculatus De Geer (Gryllidae) , 1985 .

[39]  S. Takagi,et al.  Natural History , 2019, Nature.

[40]  E. Holst,et al.  Das Reafferenzprinzip , 2004, Naturwissenschaften.

[41]  G. Pollack,et al.  Phonotaxis in flying crickets: Neural correlates , 1981 .

[42]  G. Fraenkel,et al.  The Orientation of Animals, Kineses, Taxes and Compass Reactions, , 1941 .

[43]  Franz Huber,et al.  Untersuchungen über die Funktion des Zentralnervensystems und insbesondere des Gehirnes bei der Fortbewegung und der Lauterzeugung der Grillen , 2004, Zeitschrift für vergleichende Physiologie.

[44]  J. Poulet,et al.  A corollary discharge mechanism modulates central auditory processing in singing crickets. , 2003, Journal of neurophysiology.

[45]  K. Schildberger,et al.  Brain Neurones Involved in the Control of Walking in the Cricket Gryllus Bimaculatus , 1992 .

[46]  Franz Huber,et al.  Auditory behavior of the cricket , 2004, Journal of comparative physiology.

[47]  F. Huber,et al.  14. Central Auditory Pathway: Neuronal Correlates of Phonotactic Behavior , 2019, Cricket Behavior and Neurobiology.

[48]  Gerald S. Pollack,et al.  Discrimination of calling song models by the cricket,Teleogryllus oceanicus: the influence of sound direction on neural encoding of the stimulus temporal pattern and on phonotactic behavior , 1986, Journal of Comparative Physiology A.

[49]  Jack W. Bradbury,et al.  Principles of Animal Communication , 1998 .

[50]  R. Hoy Acoustic communication in crickets: a model system for the study of feature detection. , 1978, Federation proceedings.

[51]  Harald Nocke,et al.  Physiological aspects of sound communication in crickets (Gryllus campestris L.) , 1972, Journal of comparative physiology.

[52]  K. R. Weiss,et al.  The command neuron concept , 1978, Behavioral and Brain Sciences.

[53]  Barbara Schmitz,et al.  Phonotaxis inGryllus campestris L. (Orthoptera, Gryllidae) , 2004, Journal of comparative physiology.

[54]  G. Pollack,et al.  Selective attention in an insect auditory neuron , 1988, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[55]  Eckehard Eibl Morphology of the sense organs in the proximal parts of the tibiae ofGryllus campestrisL. andGryllus bimaculatus deGeer (Insecta, Ensifera) , 1978, Zoomorphologie.

[56]  Franz Huber,et al.  Processing of sound signals by six types of neurons in the prothoracic ganglion of the cricket,Gryllus campestris L. , 1982, Journal of comparative physiology.

[57]  Harald Nocke,et al.  Biophysik der Schallerzeugung durch die Vorderflügel der Grillen , 1971, Zeitschrift für vergleichende Physiologie.

[58]  Barbara Schmitz Phonotaxis inGryllus campestris L. (Orthoptera, Gryllidae) , 1985, Journal of Comparative Physiology A.

[59]  Franz Huber,et al.  Auditory behavior of the cricket , 1981, Journal of comparative physiology.

[60]  F. Clarac,et al.  Invertebrate presynaptic inhibition and motor control , 1996, Experimental Brain Research.

[61]  M Egelhaaf,et al.  In vivo imaging of calcium accumulation in fly interneurons as elicited by visual motion stimulation. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[62]  Alexander Borst,et al.  Separation of voltage- and ligand-gated calcium influx in locust neurons by optical imaging , 1999, Neuroscience Letters.

[63]  John Thorson,et al.  Auditory behavior of the cricket , 2004, Journal of Comparative Physiology A.

[64]  Hans Scharstein,et al.  Cricket phonotaxis: localization depends on recognition of the calling song pattern , 1989, Journal of Comparative Physiology A.

[65]  Christof Koch,et al.  Biophysics of Computation: Information Processing in Single Neurons (Computational Neuroscience Series) , 1998 .

[66]  M. Berridge Neuronal Calcium Signaling , 1998, Neuron.

[67]  Hoy Rr,et al.  Acoustic communication in crickets: a model system for the study of feature detection. , 1978 .

[68]  D. Bentley Control of cricket song patterns by descending interneurons , 2004, Journal of comparative physiology.

[69]  Alexander Borst,et al.  Different mechanisms of calcium entry within different dendritic compartments. , 2002, Journal of neurophysiology.

[70]  B Hedwig,et al.  Control of cricket stridulation by a command neuron: efficacy depends on the behavioral state. , 2000, Journal of neurophysiology.

[71]  W. J. Heitler,et al.  Fifty years of a command neuron: the neurobiology of escape behavior in the crayfish , 1999, Trends in Neurosciences.

[72]  B Hedwig,et al.  Mechanisms underlying phonotactic steering in the cricket Gryllus bimaculatus revealed with a fast trackball system , 2005, Journal of Experimental Biology.

[73]  H. Markl Acoustic and vibrational communication in insects , 1985, Insectes Sociaux.

[74]  R. Sperry Neural basis of the spontaneous optokinetic response produced by visual inversion. , 1950, Journal of comparative and physiological psychology.

[75]  M. Hörner,et al.  The function of auditory neurons in cricket phonotaxis , 2004, Journal of Comparative Physiology A.

[76]  G. Boyan Auditory neurones in the brain of the cricketGryllus bimaculatus (De Geer) , 2004, Journal of comparative physiology.

[77]  Barbara Webb,et al.  Robots in invertebrate neuroscience , 2002, Nature.

[78]  T. J. Walker,et al.  Phonotaxis of Crickets in Flight: Attraction of Male and Female Crickets to Male Calling Songs , 1973, Science.

[79]  K. Grant,et al.  Corollary discharge inhibition and preservation of temporal information in a sensory nucleus of mormyrid electric fish , 1989, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[80]  J. Regen Über die Anlockung des Weibchens von Gryllus campestris L. durch telephonisch übertragene Stridulationslaute des Männchens , 1913, Pflüger's Archiv für die gesamte Physiologie des Menschen und der Tiere.

[81]  M. Hörner,et al.  The function of auditory neurons in cricket phonotaxis , 1988, Journal of Comparative Physiology A.

[82]  Karin Michel Das tympanalorgan von Gryllus bimaculatus Degeer (saltatoria, gryllidae) , 1974, Zeitschrift für Morphologie der Tiere.