Involvement of spinal release of α-neo-endorphin on the antinociceptive effect of TAPA

[1]  H. Mizoguchi,et al.  Involvement of endogenous opioid peptides in the antinociception induced by the novel dermorphin tetrapeptide analog amidino-TAPA. , 2007, European journal of pharmacology.

[2]  T. Fujimura,et al.  Contribution of spinal μ1-opioid receptors and dynorphin B to the antinociception induced by Tyr-d-Arg-Phe-Sar , 2006, Peptides.

[3]  T. Fujimura,et al.  Involvement of spinal mu1-opioid receptors on the Tyr-d-Arg-Phe-sarcosine-induced antinociception. , 2006, European journal of pharmacology.

[4]  K. Murayama,et al.  A Tyr-W-MIF-1 Analog Containing D-Pro2 Acts as a Selective μ2-Opioid Receptor Antagonist in the Mouse , 2005, Journal of Pharmacology and Experimental Therapeutics.

[5]  H. Szeto,et al.  Endogenous Opioid Peptides Contribute to Antinociceptive Potency of Intrathecal [Dmt1]DALDA , 2003, Journal of Pharmacology and Experimental Therapeutics.

[6]  K. Murayama,et al.  Endomorphin analogues containing D‐Pro2 discriminate different μ‐opioid receptor mediated antinociception in mice , 2002, British journal of pharmacology.

[7]  Toru Okayama,et al.  Synthesis and Structure−Activity Relationships of an Orally Available and Long-Acting Analgesic Peptide, Nα-Amidino-Tyr-d-Arg-Phe-MeβAla-OH (ADAMB) , 2002 .

[8]  K. Murayama,et al.  Differential antinociceptive effects induced by intrathecally administered endomorphin-1 and endomorphin-2 in the mouse. , 2001, European journal of pharmacology.

[9]  L. Yaswen,et al.  Generation of dynorphin knockout mice. , 2001, Brain research. Molecular brain research.

[10]  K. Tan-No,et al.  Selective antagonism by naloxonazine of antinociception by Tyr-D-Arg-Phe-beta-Ala, a novel dermorphin analogue with high affinity at mu-opioid receptors. , 2000, European journal of pharmacology.

[11]  H. Ueda,et al.  Differential involvement of mu-opioid receptor subtypes in endomorphin-1- and -2-induced antinociception. , 1999, European journal of pharmacology.

[12]  K. Tan-No,et al.  Contribution of spinal mu1-opioid receptors to morphine-induced antinociception. , 1999, European journal of pharmacology.

[13]  K. Tan-No,et al.  Comparison of opioid activity between a N-terminal tetrapeptide analogue of dermorphin, H-Tyr-D-Arg-Phe-beta-Ala-OH and morphine. , 1998, Methods and Findings in Experimental and Clinical Pharmacology.

[14]  Y. Sasaki,et al.  Studies on analgesic oligopeptides. VII. Solid phase synthesis and biological properties of Tyr-D-Arg-Phe-beta Ala-NH2 and its fluorinated aromatic amino acid derivatives. , 1991, Chemical & pharmaceutical bulletin.

[15]  Kenji Suzuki,et al.  Comparison of the antinociceptive effects of new [D-Arg2]-dermorphin tetrapeptide analogs and morphine in mice , 1988, Pharmacology Biochemistry and Behavior.

[16]  S. Krumins Characterization of dermorphin binding to membranes of rat brain and heart , 1987, Neuropeptides.

[17]  G. Pasternak,et al.  Minireview: Multiple MU opiate receptors , 1986 .

[18]  R. Goodman,et al.  Autoradiographic distribution of Mu1 and Mu2 opioid binding in the mouse central nervous system , 1985, Brain Research.

[19]  R. Goodman,et al.  Autoradiographic analysis of mu1, mu2, and delta opioid binding in the central nervous system of C57BL/6BY and CXBK (opioid receptor-deficient) mice , 1985, Brain Research.

[20]  T. Sato,et al.  Comparison of the antinociceptive effect between D-Arg containing dipeptides and tetrapeptides in mice , 1984, Neuropeptides.

[21]  L. Recht,et al.  Biochemical and pharmacological evidence for opioid receptor multiplicity in the central nervous system. , 1983, Life sciences.

[22]  S. Salvadori,et al.  Synthesis and pharmacological activity of dermorphin and its N-terminal sequences. , 2009, International journal of peptide and protein research.

[23]  G. Pasternak,et al.  Naloxonazine, a potent, long-lasting inhibitor of opiate binding sites. , 1982, Life sciences.

[24]  V. Erspamer,et al.  Amino acid composition and sequence of dermorphin, a novel opiate-like peptide from the skin of Phyllomedusa sauvagei. , 2009, International journal of peptide and protein research.

[25]  G. Pasternak,et al.  Classification of multiple morphine and enkephalin binding sites in the central nervous system. , 1981, Proceedings of the National Academy of Sciences of the United States of America.

[26]  V. Erspamer,et al.  PHARMACOLOGICAL DATA ON DERMORPHINS, A NEW CLASS OF POTENT OPIOID PEPTIDES FROM AMPHIBIAN SKIN , 1981, British journal of pharmacology.

[27]  G. Wilcox,et al.  Intrathecal morphine in mice: a new technique. , 1980, European journal of pharmacology.

[28]  Fred E. D'Amour,et al.  A METHOD FOR DETERMINING LOSS OF PAIN SENSATION , 1941 .