Hyperpolarization-activated cation channels: from genes to function.

Hyperpolarization-activated cyclic nucleotide-gated (HCN) channels comprise a small subfamily of proteins within the superfamily of pore-loop cation channels. In mammals, the HCN channel family comprises four members (HCN1-4) that are expressed in heart and nervous system. The current produced by HCN channels has been known as I(h) (or I(f) or I(q)). I(h) has also been designated as pacemaker current, because it plays a key role in controlling rhythmic activity of cardiac pacemaker cells and spontaneously firing neurons. Extensive studies over the last decade have provided convincing evidence that I(h) is also involved in a number of basic physiological processes that are not directly associated with rhythmicity. Examples for these non-pacemaking functions of I(h) are the determination of the resting membrane potential, dendritic integration, synaptic transmission, and learning. In this review we summarize recent insights into the structure, function, and cellular regulation of HCN channels. We also discuss in detail the different aspects of HCN channel physiology in the heart and nervous system. To this end, evidence on the role of individual HCN channel types arising from the analysis of HCN knockout mouse models is discussed. Finally, we provide an overview of the impact of HCN channels on the pathogenesis of several diseases and discuss recent attempts to establish HCN channels as drug targets.

[1]  Yanjie Lu,et al.  Down-regulation of miR-1/miR-133 contributes to re-expression of pacemaker channel genes HCN2 and HCN4 in hypertrophic heart. , 2008, The Journal of Biological Chemistry.

[2]  Frank Müller,et al.  Light responses in the mouse retina are prolonged upon targeted deletion of the HCN1 channel gene , 2008, The European journal of neuroscience.

[3]  S. Nattel,et al.  Molecular basis of funny current (If) in normal and failing human heart. , 2008, Journal of molecular and cellular cardiology.

[4]  A. Colino,et al.  ZD 7288 inhibits T-type calcium current in rat hippocampal pyramidal cells , 2008, Neuroscience Letters.

[5]  Regulation of cell surface expression of functional pacemaker channels by a motif in the B-helix of the cyclic nucleotide-binding domain. , 2008, American journal of physiology. Cell physiology.

[6]  B. Fakler,et al.  Recycling endosomes supply cardiac pacemaker channels for regulated surface expression. , 2008, Cardiovascular research.

[7]  Matteo E Mangoni,et al.  Genesis and regulation of the heart automaticity. , 2008, Physiological reviews.

[8]  S. Siegelbaum,et al.  Pathway and endpoint free energy calculations for cyclic nucleotide binding to HCN channels. , 2008, Biophysical journal.

[9]  Patrick Meuth,et al.  Reciprocal modulation of Ih and ITASK in thalamocortical relay neurons by halothane , 2008, Pflügers Archiv - European Journal of Physiology.

[10]  Bertil Hille,et al.  PIP2 is a necessary cofactor for ion channel function: how and why? , 2008, Annual review of biophysics.

[11]  Y. Wan,et al.  Characteristics of HCN Channels and Their Participation in Neuropathic Pain , 2008, Neurochemical Research.

[12]  D. Schulz,et al.  Mechanisms of voltage-gated ion channel regulation: from gene expression to localization , 2008, Cellular and Molecular Life Sciences.

[13]  G. Tomaselli,et al.  Mechanisms of Disease: ion channel remodeling in the failing ventricle , 2008, Nature Clinical Practice Cardiovascular Medicine.

[14]  P. Kirchhof,et al.  Cardiac pacemaker function of HCN4 channels in mice is confined to embryonic development and requires cyclic AMP , 2008, The EMBO journal.

[15]  T. Baram,et al.  Mechanisms of seizure-induced ‘transcriptional channelopathy’ of hyperpolarization-activated cyclic nucleotide gated (HCN) channels , 2008, Neurobiology of Disease.

[16]  J. Trimmer,et al.  Potassium channel phosphorylation in excitable cells: providing dynamic functional variability to a diverse family of ion channels. , 2008, Physiology.

[17]  D. Johns,et al.  K+ Channel Regulator KCR1 Suppresses Heart Rhythm by Modulating the Pacemaker Current If , 2008, PloS one.

[18]  Gernot Guigas,et al.  Sampling the cell with anomalous diffusion - the discovery of slowness. , 2008, Biophysical journal.

[19]  Qi Zhang,et al.  Src tyrosine kinase alters gating of hyperpolarization-activated HCN4 pacemaker channel through Tyr531. , 2008, American journal of physiology. Cell physiology.

[20]  S. Siegelbaum,et al.  HCN1 Channels Constrain Synaptically Evoked Ca2+ Spikes in Distal Dendrites of CA1 Pyramidal Neurons , 2007, Neuron.

[21]  G. Demontis,et al.  High-Pass Filtering of Input Signals by the Ih Current in a Non-Spiking Neuron, the Retinal Rod Bipolar Cell , 2007, PloS one.

[22]  Mark S. Shapiro,et al.  Regulation of ion transport proteins by membrane phosphoinositides , 2007, Nature Reviews Neuroscience.

[23]  M. Nolan,et al.  HCN1 Channels Control Resting and Active Integrative Properties of Stellate Cells from Layer II of the Entorhinal Cortex , 2007, The Journal of Neuroscience.

[24]  Stefan Herrmann,et al.  HCN4 provides a ‘depolarization reserve’ and is not required for heart rate acceleration in mice , 2007, The EMBO journal.

[25]  H. Katus,et al.  Heart Rate Reduction After Heart Transplantation With Beta-Blocker Versus the Selective If Channel Antagonist Ivabradine , 2007, Transplantation.

[26]  A. Lavin,et al.  α2‐Noradrenergic receptors activation enhances excitability and synaptic integration in rat prefrontal cortex pyramidal neurons via inhibition of HCN currents , 2007, The Journal of physiology.

[27]  M. Biel,et al.  Function and Dysfunction of CNG Channels: Insights from Channelopathies and Mouse Models , 2007, Molecular Neurobiology.

[28]  A. Arnsten,et al.  Catecholamine and second messenger influences on prefrontal cortical networks of "representational knowledge": a rational bridge between genetics and the symptoms of mental illness. , 2007, Cerebral cortex.

[29]  Krista I Kinard,et al.  Molecular Mapping of the Binding Site for a Blocker of Hyperpolarization-Activated, Cyclic Nucleotide-Modulated Pacemaker Channels , 2007, Journal of Pharmacology and Experimental Therapeutics.

[30]  W. N. Zagotta,et al.  Structural dynamics in the gating ring of cyclic nucleotide–gated ion channels , 2007, Nature Structural &Molecular Biology.

[31]  Michael London,et al.  Local and Global Effects of Ih Distribution in Dendrites of Mammalian Neurons , 2007, The Journal of Neuroscience.

[32]  F. Jia,et al.  Dendritic HCN2 Channels Constrain Glutamate-Driven Excitability in Reticular Thalamic Neurons , 2007, The Journal of Neuroscience.

[33]  R. Shigemoto,et al.  HCN2 and HCN4 Isoforms Self-assemble and Co-assemble with Equal Preference to Form Functional Pacemaker Channels* , 2007, Journal of Biological Chemistry.

[34]  G. Tibbs,et al.  Propofol inhibits HCN1 pacemaker channels by selective association with the closed states of the membrane embedded channel core , 2007, The Journal of physiology.

[35]  EyalNof,et al.  Point Mutation in the HCN4 Cardiac Ion Channel Pore Affecting Synthesis, Trafficking, and Functional Expression Is Associated With Familial Asymptomatic Sinus Bradycardia , 2007 .

[36]  P. Bois,et al.  Molecular regulation and pharmacology of pacemaker channels. , 2007, Current pharmaceutical design.

[37]  T. Opthof,et al.  Aldosterone modulates If current through gene expression in cultured neonatal rat ventricular myocytes , 2007 .

[38]  A. Bruening-Wright,et al.  Kinetic Relationship between the Voltage Sensor and the Activation Gate in spHCN Channels , 2007, The Journal of general physiology.

[39]  S. Siegelbaum,et al.  Gating of HCN channels by cyclic nucleotides: residue contacts that underlie ligand binding, selectivity, and efficacy. , 2007, Structure.

[40]  Banumathi Sankaran,et al.  Structure and rearrangements in the carboxy-terminal region of SpIH channels. , 2007, Structure.

[41]  R. Harris-Warrick,et al.  Panulirus interruptus Ih-channel gene PIIH: modification of channel properties by alternative splicing and role in rhythmic activity. , 2007, Journal of neurophysiology.

[42]  D. Vasilyev,et al.  Direct inhibition of Ih by analgesic loperamide in rat DRG neurons. , 2007, Journal of neurophysiology.

[43]  D. McCormick,et al.  α2A-Adrenoceptors Strengthen Working Memory Networks by Inhibiting cAMP-HCN Channel Signaling in Prefrontal Cortex , 2007, Cell.

[44]  D. DiFrancesco,et al.  Heart rate reduction via selective 'funny' channel blockers. , 2007, Current opinion in pharmacology.

[45]  K. J. Fogle,et al.  HCN Pacemaker Channel Activation Is Controlled by Acidic Lipids Downstream of Diacylglycerol Kinase and Phospholipase A2 , 2007, The Journal of Neuroscience.

[46]  P. MacDonald,et al.  Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels in Pancreatic β-Cells , 2007 .

[47]  N. P. Poolos,et al.  Reversed somatodendritic Ih gradient in a class of rat hippocampal neurons with pyramidal morphology , 2007, The Journal of physiology.

[48]  Y. Li,et al.  Calcium influx through If channels in rat ventricular myocytes. , 2007, American journal of physiology. Cell physiology.

[49]  M. Biel,et al.  Direct Inhibition of Cardiac Hyperpolarization-Activated Cyclic Nucleotide–Gated Pacemaker Channels by Clonidine , 2007, Circulation.

[50]  J. Stieber,et al.  Pathophysiology of HCN channels , 2007, Pflügers Archiv - European Journal of Physiology.

[51]  Graham V. Williams,et al.  Inverted-U dopamine D1 receptor actions on prefrontal neurons engaged in working memory , 2007, Nature Neuroscience.

[52]  G. Demontis,et al.  Cellular mechanisms underlying the pharmacological induction of phosphenes , 2007, British journal of pharmacology.

[53]  S. Siegelbaum,et al.  Voltage Sensor Movement and cAMP Binding Allosterically Regulate an Inherently Voltage-independent Closed−Open Transition in HCN Channels , 2007, The Journal of general physiology.

[54]  A. Bruening-Wright,et al.  Slow Conformational Changes of the Voltage Sensor during the Mode Shift in Hyperpolarization-Activated Cyclic-Nucleotide-Gated Channels , 2007, The Journal of Neuroscience.

[55]  P. Chomarat,et al.  Use‐dependent inhibition of hHCN4 by ivabradine and relationship with reduction in pacemaker activity , 2007, British journal of pharmacology.

[56]  A. Lüthi,et al.  Regulation of recombinant and native hyperpolarization-activated cation channels , 2004, Molecular Neurobiology.

[57]  T. Opthof,et al.  Aldosterone modulates I(f) current through gene expression in cultured neonatal rat ventricular myocytes. , 2007, American journal of physiology. Heart and circulatory physiology.

[58]  D. DiFrancesco,et al.  Localization of f-channels to caveolae mediates specific beta2-adrenergic receptor modulation of rate in sinoatrial myocytes. , 2007, Journal of molecular and cellular cardiology.

[59]  A. Wittinghofer,et al.  Capturing cyclic nucleotides in action: snapshots from crystallographic studies , 2007, Nature Reviews Molecular Cell Biology.

[60]  C. Marshall,et al.  The evolution and structural diversification of Hyperpolarization-activated cyclic nucleotide-gated ( HCN ) channel genes , 2007 .

[61]  John A. White,et al.  Contributions of Ih to feature selectivity in layer II stellate cells of the entorhinal cortex , 2007, Journal of Computational Neuroscience.

[62]  S. Ying,et al.  Compartmental distribution of hyperpolarization-activated cyclic-nucleotide-gated channel 2 and hyperpolarization-activated cyclic-nucleotide-gated channel 4 in thalamic reticular and thalamocortical relay neurons , 2006, Neuroscience.

[63]  Y. Wan,et al.  Theta-frequency membrane resonance and its ionic mechanisms in rat subicular pyramidal neurons , 2006, Neuroscience.

[64]  M. Steriade Grouping of brain rhythms in corticothalamic systems , 2006, Neuroscience.

[65]  B. Fakler,et al.  Pacemaking by HCN Channels Requires Interaction with Phosphoinositides , 2006, Neuron.

[66]  S. Siegelbaum,et al.  Regulation of Gating and Rundown of HCN Hyperpolarization-activated Channels by Exogenous and Endogenous PIP2 , 2006, The Journal of general physiology.

[67]  R. Meyer,et al.  Mechanisms of Neuropathic Pain , 2006, Neuron.

[68]  K. Iwata,et al.  Mechanisms involved in modulation of trigeminal primary afferent activity in rats with peripheral mononeuropathy , 2006, The European journal of neuroscience.

[69]  F. Elinder,et al.  Mode shifts in the voltage gating of the mouse and human HCN2 and HCN4 channels , 2006, The Journal of physiology.

[70]  G. Yellen,et al.  Reversal of HCN Channel Voltage Dependence via Bridging of the S4–S5 Linker and Post-S6 , 2006, The Journal of general physiology.

[71]  H. Pape,et al.  Membrane resting potential of thalamocortical relay neurons is shaped by the interaction among TASK3 and HCN2 channels. , 2006, Journal of neurophysiology.

[72]  Anita Lüthi,et al.  Functional stabilization of weakened thalamic pacemaker channel regulation in rat absence epilepsy , 2006, The Journal of physiology.

[73]  G. Stuart,et al.  Single Ih Channels in Pyramidal Neuron Dendrites: Properties, Distribution, and Impact on Action Potential Output , 2006, The Journal of Neuroscience.

[74]  N. P. Poolos,et al.  Modulation of h-Channels in Hippocampal Pyramidal Neurons by p38 Mitogen-Activated Protein Kinase , 2006, The Journal of Neuroscience.

[75]  Queer channels in hippocampal basket cells: h‐current without sag , 2006, The Journal of physiology.

[76]  Peter Jonas,et al.  Hyperpolarization‐activated cation channels in fast‐spiking interneurons of rat hippocampus , 2006, The Journal of physiology.

[77]  M. Biel,et al.  The enhancement of HCN channel instantaneous current facilitated by slow deactivation is regulated by intracellular chloride concentration , 2006, Pflügers Archiv.

[78]  A. Mugelli,et al.  I(f) in non-pacemaker cells: role and pharmacological implications. , 2006, Pharmacological research.

[79]  N. Ropert,et al.  Expression of a functional hyperpolarization-activated current (Ih) in the mouse nucleus reticularis thalami. , 2006, Journal of neurophysiology.

[80]  J. Deuchars,et al.  HCN1 ion channel immunoreactivity in spinal cord and medulla oblongata , 2006, Brain Research.

[81]  Han-Gang Yu,et al.  Constitutively Active Src Tyrosine Kinase Changes Gating of HCN4 Channels Through Direct Binding to the Channel Proteins , 2006, Journal of cardiovascular pharmacology.

[82]  D. DiFrancesco,et al.  Properties of ivabradine‐induced block of HCN1 and HCN4 pacemaker channels , 2006, The Journal of physiology.

[83]  F. Hofmann,et al.  Bradycardic and Proarrhythmic Properties of Sinus Node Inhibitors , 2006, Molecular Pharmacology.

[84]  Sheng Ye,et al.  Atomic structure of a Na+- and K+-conducting channel , 2006, Nature.

[85]  Membrane biology: Permutations of permeability , 2006, Nature.

[86]  E. Lakatta,et al.  High Basal Protein Kinase A–Dependent Phosphorylation Drives Rhythmic Internal Ca2+ Store Oscillations and Spontaneous Beating of Cardiac Pacemaker Cells , 2006, Circulation research.

[87]  Frank Müller,et al.  Retinal bipolar cell types differ in their inventory of ion channels , 2006, Visual Neuroscience.

[88]  W. N. Zagotta,et al.  CNG and HCN channels: two peas, one pod. , 2006, Annual review of physiology.

[89]  A. Mugelli,et al.  Functional remodeling in post-myocardial infarcted rats: focus on beta-adrenoceptor subtypes. , 2006, Journal of molecular and cellular cardiology.

[90]  A. Timmis,et al.  Ivabradine – the first selective sinus node If channel inhibitor in the treatment of stable angina , 2006, International journal of clinical practice.

[91]  Tomaso Gnecchi-Ruscone,et al.  Familial sinus bradycardia associated with a mutation in the cardiac pacemaker channel. , 2006, The New England journal of medicine.

[92]  R. Robinson,et al.  Pacemaker current and automatic rhythms: toward a molecular understanding. , 2006, Handbook of experimental pharmacology.

[93]  Jörg Striessnig,et al.  Voltage-dependent calcium channels and cardiac pacemaker activity: from ionic currents to genes. , 2006, Progress in biophysics and molecular biology.

[94]  C. Siu,et al.  HCN-Encoded Pacemaker Channels: From Physiology and Biophysics to Bioengineering , 2006, The Journal of Membrane Biology.

[95]  Donata Oertel,et al.  Hyperpolarization-activated currents regulate excitability in stellate cells of the mammalian ventral cochlear nucleus. , 2006, Journal of neurophysiology.

[96]  H. Kwan,et al.  Regulation of TRP Channels by Phosphorylation , 2006, Neurosignals.

[97]  Susan S. Taylor,et al.  Dynamics of signaling by PKA. , 2005, Biochimica et biophysica acta.

[98]  W. Catterall,et al.  Overview of Molecular Relationships in the Voltage-Gated Ion Channel Superfamily , 2005, Pharmacological Reviews.

[99]  N. Harrison,et al.  Impairment of Hyperpolarization-Activated, Cyclic Nucleotide-Gated Channel Function by the Intravenous General Anesthetic Propofol , 2005, Journal of Pharmacology and Experimental Therapeutics.

[100]  Hans-Christian Pape,et al.  Impaired Regulation of Thalamic Pacemaker Channels through an Imbalance of Subunit Expression in Absence Epilepsy , 2005, The Journal of Neuroscience.

[101]  F. Hofmann,et al.  Functional Expression of the Human HCN3 Channel* , 2005, Journal of Biological Chemistry.

[102]  R. Zeng,et al.  A Novel Mechanism of Modulation of Hyperpolarization-activated Cyclic Nucleotide-gated Channels by Src Kinase*[boxs] , 2005, Journal of Biological Chemistry.

[103]  Nelson Spruston,et al.  Factors mediating powerful voltage attenuation along CA1 pyramidal neuron dendrites , 2005, The Journal of physiology.

[104]  T. Baram,et al.  Single channel properties of hyperpolarization‐activated cation currents in acutely dissociated rat hippocampal neurones , 2005, The Journal of physiology.

[105]  J. Nerbonne,et al.  Molecular physiology of cardiac repolarization. , 2005, Physiological reviews.

[106]  D. Surmeier,et al.  Dendritic Excitability of Mouse Frontal Cortex Pyramidal Neurons Is Shaped by the Interaction among HCN, Kir2, and Kleak Channels , 2005, The Journal of Neuroscience.

[107]  V. Vacquier,et al.  A new hyperpolarization-activated, cyclic nucleotide-gated channel from sea urchin sperm flagella. , 2005, Biochemical and biophysical research communications.

[108]  E. Campbell,et al.  Voltage Sensor of Kv1.2: Structural Basis of Electromechanical Coupling , 2005, Science.

[109]  M. Biel,et al.  The Murine HCN3 Gene Encodes a Hyperpolarization-activated Cation Channel with Slow Kinetics and Unique Response to Cyclic Nucleotides* , 2005, Journal of Biological Chemistry.

[110]  Annalisa Bucchi,et al.  Physiology and pharmacology of the cardiac pacemaker ("funny") current. , 2005, Pharmacology & therapeutics.

[111]  L. Sorkin,et al.  Hyperpolarization-activated, cation-nonselective, cyclic nucleotide-modulated channel blockade alleviates mechanical allodynia and suppresses ectopic discharge in spinal nerve ligated rats. , 2005, The journal of pain : official journal of the American Pain Society.

[112]  A. Shrier,et al.  Identification of the cyclic-nucleotide-binding domain as a conserved determinant of ion-channel cell-surface localization , 2005, Journal of Cell Science.

[113]  D. Bayliss,et al.  HCN Subunit-Specific and cAMP-Modulated Effects of Anesthetics on Neuronal Pacemaker Currents , 2005, The Journal of Neuroscience.

[114]  M. Steriade Sleep, epilepsy and thalamic reticular inhibitory neurons , 2005, Trends in Neurosciences.

[115]  T. Baram,et al.  Formation of heteromeric hyperpolarization-activated cyclic nucleotide-gated (HCN) channels in the hippocampus is regulated by developmental seizures , 2005, Neurobiology of Disease.

[116]  G. Gisselmann,et al.  Variants of the Drosophila melanogaster Ih-channel are generated by different splicing. , 2005, Insect biochemistry and molecular biology.

[117]  K. Mikoshiba,et al.  Initiation of embryonic cardiac pacemaker activity by inositol 1,4,5-trisphosphate-dependent calcium signaling. , 2005, Molecular biology of the cell.

[118]  Nancy Kopell,et al.  Slow and fast inhibition and an H-current interact to create a theta rhythm in a model of CA1 interneuron network. , 2005, Journal of neurophysiology.

[119]  C. Wahl-Schott,et al.  An Arginine Residue in the Pore Region Is a Key Determinant of Chloride Dependence in Cardiac Pacemaker Channels* , 2005, Journal of Biological Chemistry.

[120]  F. Elinder,et al.  Hysteresis in the Voltage Dependence of HCN Channels , 2005, The Journal of general physiology.

[121]  B. Ache,et al.  Molecular and functional characterization of an Ih‐channel from lobster olfactory receptor neurons , 2005 .

[122]  B. Lowes,et al.  Molecular remodeling in the failing human heart , 2005, Current heart failure reports.

[123]  W. N. Zagotta,et al.  The carboxyl-terminal region of cyclic nucleotide-modulated channels is a gating ring, not a permeation path. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[124]  Stefan Herzig,et al.  Single-Channel Properties Support a Potential Contribution of Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels and If to Cardiac Arrhythmias , 2005, Circulation.

[125]  Qiang Sun,et al.  Inhibition of hyperpolarization-activated current by ZD7288 suppresses ectopic discharges of injured dorsal root ganglion neurons in a rat model of neuropathic pain , 2005, Brain Research.

[126]  Ming Lei,et al.  Specific pattern of ionic channel gene expression associated with pacemaker activity in the mouse heart , 2005, The Journal of physiology.

[127]  E. Accili,et al.  Inhibition of the hyperpolarization-activated current (if) of rabbit SA node myocytes by niflumic acid , 1996, Pflügers Archiv.

[128]  B. Ache,et al.  Molecular and functional characterization of an I(h)-channel from lobster olfactory receptor neurons. , 2005, The European journal of neuroscience.

[129]  T. V. Nguyen,et al.  Molecular and functional analysis of hyperpolarisation-activated nucleotide-gated (HCN) channels in the enteric nervous system , 2004, Neuroscience.

[130]  J. Borer Drug Insight: If inhibitors as specific heart-rate-reducing agents , 2004, Nature Clinical Practice Cardiovascular Medicine.

[131]  W. N. Zagotta,et al.  Salt Bridges and Gating in the COOH-terminal Region of HCN2 and CNGA1 Channels , 2004, The Journal of General Physiology.

[132]  Matthew F. Nolan,et al.  A Behavioral Role for Dendritic Integration HCN1 Channels Constrain Spatial Memory and Plasticity at Inputs to Distal Dendrites of CA1 Pyramidal Neurons , 2004, Cell.

[133]  S. Siegelbaum,et al.  Regulation of HCN Channel Surface Expression by a Novel C-Terminal Protein-Protein Interaction , 2004, The Journal of Neuroscience.

[134]  Klaus Zorn-Pauly,et al.  If in left human atrium: a potential contributor to atrial ectopy. , 2004, Cardiovascular research.

[135]  D. Johnston,et al.  Seizure-Induced Plasticity of h Channels in Entorhinal Cortical Layer III Pyramidal Neurons , 2004, Neuron.

[136]  D. DiFrancesco,et al.  Interaction of the Pacemaker Channel HCN1 with Filamin A* , 2004, Journal of Biological Chemistry.

[137]  Yelena Kryukova,et al.  MiRP1 Modulates HCN2 Channel Expression and Gating in Cardiac Myocytes* , 2004, Journal of Biological Chemistry.

[138]  W. Catterall,et al.  The VGL-Chanome: A Protein Superfamily Specialized for Electrical Signaling and Ionic Homeostasis , 2004, Science's STKE.

[139]  C. Davies,et al.  Characterization of the human HCN1 channel and its inhibition by capsazepine , 2004, British journal of pharmacology.

[140]  G. Gisselmann,et al.  Functional characterization of I h‐channel splice variants from Apis mellifera , 2004, FEBS letters.

[141]  Pablo Fuentealba,et al.  Prolonged hyperpolarizing potentials precede spindle oscillations in the thalamic reticular nucleus. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[142]  H. Morita,et al.  Functional Characterization of a Trafficking-defective HCN4 Mutation, D553N, Associated with Cardiac Arrhythmia* , 2004, Journal of Biological Chemistry.

[143]  G. Buzsáki,et al.  Neuronal Oscillations in Cortical Networks , 2004, Science.

[144]  Robert Nitsch,et al.  An impaired neocortical Ih is associated with enhanced excitability and absence epilepsy , 2004, The European journal of neuroscience.

[145]  D. DiFrancesco,et al.  Localization of Pacemaker Channels in Lipid Rafts Regulates Channel Kinetics , 2004, Circulation research.

[146]  D. DiFrancesco,et al.  Pacemaker Channels , 2004, Annals of the New York Academy of Sciences.

[147]  E. Accili,et al.  Structural Elements of Instantaneous and Slow Gating in Hyperpolarization-activated Cyclic Nucleotide-gated Channels* , 2004, Journal of Biological Chemistry.

[148]  P. Jonas,et al.  Functional Conversion Between A-Type and Delayed Rectifier K+ Channels by Membrane Lipids , 2004, Science.

[149]  R. Shigemoto,et al.  Immunohistochemical localization of Ih channel subunits, HCN1–4, in the rat brain , 2004, The Journal of comparative neurology.

[150]  M. Sanguinetti,et al.  Voltage-dependent Gating of Hyperpolarization-activated, Cyclic Nucleotide-gated Pacemaker Channels , 2004, Journal of Biological Chemistry.

[151]  Brad S Rothberg,et al.  Inactivation in HCN Channels Results from Reclosure of the Activation Gate Desensitization to Voltage , 2004, Neuron.

[152]  Chun-feng Shang,et al.  Calcium influx through hyperpolarization-activated cation channels (I(h) channels) contributes to activity-evoked neuronal secretion. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[153]  A. Lüthi,et al.  Pacemaker channels in mouse thalamocortical neurones are regulated by distinct pathways of cAMP synthesis , 2004, The Journal of physiology.

[154]  N. P. Poolos,et al.  The Yin and Yang of the H-Channel and Its Role in Epilepsy , 2004, Epilepsy currents.

[155]  H. Larsson,et al.  S4 Movement in a Mammalian HCN Channel , 2004, The Journal of general physiology.

[156]  J. Kelly,et al.  Adenosine 3′∶5′-cyclic monophosphate mediates a 5-hydroxytryptamine-induced response in neonatal rat motoneurones , 1995, Pflügers Archiv.

[157]  D. DiFrancesco Some properties of the UL-FS 49 block of the hyperpolarization-activated current (if) in sino-atrial node myocytes , 1994, Pflügers Archiv.

[158]  P. Nye,et al.  Ca2+ and Mg-ATP activated potassium channels from rat pulmonary artery , 1992, Pflügers Archiv.

[159]  A. Noma,et al.  External K+ increases Na+ conductance of the hyperpolarization-activated current in rabbit cardiac pacemaker cells , 1992, Pflügers Archiv.

[160]  D. Janigro,et al.  Block of the cardiac pacemaker current (If) in the rabbit sino-atrial node and in canine Purkinje fibres by 9-amino-1,2,3,4-tetrahydroacridine , 1991, Pflügers Archiv.

[161]  D. Snyders,et al.  Alinidine modifies the pacemaker current in sheep Purkinje fibers , 1987, Pflügers Archiv.

[162]  H. Irisawa,et al.  Inward current activated during hyperpolarization in the rabbit sinoatrial node cell , 1980, Pflügers Archiv.

[163]  木村 幸司 Hyperpolarization-activated, cyclic nucleotide-gated HCN2 cation channel forms a protein assembly with multiple neuronal scaffold proteins in distinct modes of protein-protein interaction , 2004 .

[164]  F. Hofmann,et al.  Pacemaker channels and sinus node arrhythmia. , 2004, Trends in cardiovascular medicine.

[165]  D. Noble,et al.  High selectivity of the if channel to Na+ and K+ in rabbit isolated sinoatrial node cells , 2004, Pflügers Archiv.

[166]  Hyperpolarization-activated cationic channels in smooth muscle cells are stretch sensitive , 2004, Pflügers Archiv.

[167]  Å. Edman,et al.  Ion permeation through hyperpolarization-activated membrane channels (Q-channels) in the lobster stretch receptor neurone , 2004, Pflügers Archiv - European Journal of Physiology.

[168]  S. Siegelbaum,et al.  Regulation of Hyperpolarization-Activated HCN Channels by cAMP through a Gating Switch in Binding Domain Symmetry , 2003, Neuron.

[169]  M. Biel,et al.  The hyperpolarization-activated channel HCN4 is required for the generation of pacemaker action potentials in the embryonic heart , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[170]  D. Roden,et al.  IKr drug response is modulated by KCR1 in transfected cardiac and noncardiac cell lines , 2003, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[171]  L. Boscá,et al.  Regional distribution of hyperpolarization‐activated current (If) and hyperpolarization‐activated cyclic nucleotide‐gated channel mRNA expression in ventricular cells from control and hypertrophied rat hearts , 2003, The Journal of physiology.

[172]  I. Efimov,et al.  Site of Origin and Molecular Substrate of Atrioventricular Junctional Rhythm in the Rabbit Heart , 2003, Circulation research.

[173]  S. Siegelbaum,et al.  Hyperpolarization-activated cation currents: from molecules to physiological function. , 2003, Annual review of physiology.

[174]  Matthew F. Nolan,et al.  The Hyperpolarization-Activated HCN1 Channel Is Important for Motor Learning and Neuronal Integration by Cerebellar Purkinje Cells , 2003, Cell.

[175]  G. Gisselmann,et al.  Characterization of recombinant and native Ih-channels from Apis mellifera. , 2003, Insect biochemistry and molecular biology.

[176]  Joseph A. Hill,et al.  Electrical remodeling in cardiac hypertrophy. , 2003, Trends in cardiovascular medicine.

[177]  C. Wahl-Schott,et al.  Role of Subunit Heteromerization and N-Linked Glycosylation in the Formation of Functional Hyperpolarization-activated Cyclic Nucleotide-gated Channels* , 2003, Journal of Biological Chemistry.

[178]  M. Whittington,et al.  Gamma Oscillations Induced by Kainate Receptor Activation in the Entorhinal Cortex In Vitro , 2003, The Journal of Neuroscience.

[179]  Caroline Dart,et al.  Direct Interaction between the Actin-binding Protein Filamin-A and the Inwardly Rectifying Potassium Channel, Kir2.1* , 2003, Journal of Biological Chemistry.

[180]  P. van Bogaert,et al.  Use-dependent blockade of cardiac pacemaker current (If) by cilobradine and zatebradine. , 2003, European journal of pharmacology.

[181]  J. Magee,et al.  Impaired Regulation of Synaptic Strength in Hippocampal Neurons from GluR1‐Deficient Mice , 2003, The Journal of physiology.

[182]  Walter Senn,et al.  Hyperpolarization-activated current Ih disconnects somatic and dendritic spike initiation zones in layer V pyramidal neurons. , 2003, Journal of neurophysiology.

[183]  納冨 拓也,et al.  Immunohistochemical localization of I[h] channel subunits, HCN1-4, in the rat brain , 2003 .

[184]  Rich Olson,et al.  Structural basis for modulation and agonist specificity of HCN pacemaker channels , 2003, Nature.

[185]  T. Thum,et al.  Hallmarks of ion channel gene expression in end‐stage heart failure , 2003, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[186]  H. Beck,et al.  Enhanced Expression of a Specific Hyperpolarization-Activated Cyclic Nucleotide-Gated Cation Channel (HCN) in Surviving Dentate Gyrus Granule Cells of Human and Experimental Epileptic Hippocampus , 2003, The Journal of Neuroscience.

[187]  N. Decher,et al.  KCNE2 modulates current amplitudes and activation kinetics of HCN4: influence of KCNE family members on HCN4 currents , 2003, Pflügers Archiv.

[188]  D. DiFrancesco,et al.  Heteromeric HCN1–HCN4 Channels: A Comparison with Native Pacemaker Channels from the Rabbit Sinoatrial Node , 2003, The Journal of physiology.

[189]  G. Breithardt,et al.  Pacemaker channel dysfunction in a patient with sinus node disease. , 2003, The Journal of clinical investigation.

[190]  A. Mugelli,et al.  Treatment With Irbesartan Counteracts the Functional Remodeling of Ventricular Myocytes From Hypertensive Rats , 2003, Journal of cardiovascular pharmacology.

[191]  S. Haverkamp,et al.  HCN channels are expressed differentially in retinal bipolar cells and concentrated at synaptic terminals , 2003, The European journal of neuroscience.

[192]  J. Magee,et al.  Mechanism of the distance‐dependent scaling of Schaffer collateral synapses in rat CA1 pyramidal neurons , 2003, The Journal of physiology.

[193]  J. Victor,et al.  Role of hyperpolarization-activated currents for the intrinsic dynamics of isolated retinal neurons. , 2003, Biophysical journal.

[194]  R. LaMotte,et al.  Upregulation of the Hyperpolarization-Activated Cation Current after Chronic Compression of the Dorsal Root Ganglion , 2003, The Journal of Neuroscience.

[195]  E. Azene,et al.  Molecular Basis of the Effect of Potassium on Heterologously Expressed Pacemaker (HCN) Channels , 2003, The Journal of physiology.

[196]  E. Lakatta,et al.  Cyclic Variation of Intracellular Calcium: A Critical Factor for Cardiac Pacemaker Cell Dominance , 2003, Circulation research.

[197]  M. Steriade,et al.  Neuronal Plasticity in Thalamocortical Networks during Sleep and Waking Oscillations , 2003, Neuron.

[198]  A. Dubin,et al.  Neuronal Hyperpolarization-Activated Pacemaker Channels Drive Neuropathic Pain , 2003, The Journal of Neuroscience.

[199]  R. Surges,et al.  Gabapentin Increases the Hyperpolarization‐activated Cation Current Ih in Rat CA1 Pyramidal Cells , 2003, Epilepsia.

[200]  M. Biel,et al.  Dominant-Negative Suppression of HCN Channels Markedly Reduces the Native Pacemaker Current If and Undermines Spontaneous Beating of Neonatal Cardiomyocytes , 2003, Circulation.

[201]  Knut Holthoff,et al.  Absence epilepsy and sinus dysrhythmia in mice lacking the pacemaker channel HCN2 , 2003, The EMBO journal.

[202]  T. Yamauchi,et al.  Ih Blockers Have a Potential of Antiepileptic Effects , 2003, Epilepsia.

[203]  Han-Gang Yu,et al.  Tyrosine kinase inhibition differentially regulates heterologously expressed HCN channels , 2003, Pflügers Archiv.

[204]  J. Storm,et al.  Two forms of electrical resonance at theta frequencies, generated by M‐current, h‐current and persistent Na+ current in rat hippocampal pyramidal cells , 2002, The Journal of physiology.

[205]  Gábor Tamás,et al.  Polarized and compartment-dependent distribution of HCN1 in pyramidal cell dendrites , 2002, Nature Neuroscience.

[206]  F. Elinder,et al.  Voltage-sensing mechanism is conserved among ion channels gated by opposite voltages , 2002, Nature.

[207]  Matthew F Nolan,et al.  Activity-Dependent Regulation of HCN Pacemaker Channels by Cyclic AMP Signaling through Dynamic Allosteric Coupling , 2002, Neuron.

[208]  E. Accili,et al.  Separable Gating Mechanisms in a Mammalian Pacemaker Channel* , 2002, The Journal of Biological Chemistry.

[209]  Fiona E. N. LeBeau,et al.  A Model of Atropine‐Resistant Theta Oscillations in Rat Hippocampal Area CA1 , 2002, The Journal of physiology.

[210]  E. Accili,et al.  Different Roles for the Cyclic Nucleotide Binding Domain and Amino Terminus in Assembly and Expression of Hyperpolarization-activated, Cyclic Nucleotide-gated Channels* , 2002, The Journal of Biological Chemistry.

[211]  D. Johnston,et al.  Pharmacological upregulation of h-channels reduces the excitability of pyramidal neuron dendrites , 2002, Nature Neuroscience.

[212]  G. Vargas,et al.  Modulation by PKA of the Hyperpolarization-activated Current (Ih) in Cultured Rat Olfactory Receptor Neurons , 2002, The Journal of Membrane Biology.

[213]  Martin Biel,et al.  Cardiac HCN channels: structure, function, and modulation. , 2002, Trends in cardiovascular medicine.

[214]  D. DiFrancesco,et al.  Current-dependent Block of Rabbit Sino-Atrial Node If Channels by Ivabradine , 2002, The Journal of general physiology.

[215]  P. Castillo,et al.  Assessing the role of Ih channels in synaptic transmission and mossy fiber LTP , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[216]  E. Marbán,et al.  Dominant-Negative Suppression of HCN1- and HCN2-Encoded Pacemaker Currents by an Engineered HCN1 Construct: Insights Into Structure-Function Relationships and Multimerization , 2002, Circulation research.

[217]  D. Ulrich,et al.  Dendritic resonance in rat neocortical pyramidal cells. , 2002, Journal of neurophysiology.

[218]  G. Demontis,et al.  Vision: how to catch fast signals with slow detectors. , 2002, News in physiological sciences : an international journal of physiology produced jointly by the International Union of Physiological Sciences and the American Physiological Society.

[219]  T. Baram,et al.  Developmental Febrile Seizures Modulate Hippocampal Gene Expression of Hyperpolarization-Activated Channels in an Isoform- and Cell-Specific Manner , 2002, The Journal of Neuroscience.

[220]  I. Greenwood,et al.  Characteristics of hyperpolarization-activated cation currents in portal vein smooth muscle cells. , 2002, American journal of physiology. Cell physiology.

[221]  Catherine Proenza,et al.  Pacemaker Channels Produce an Instantaneous Current* , 2002, The Journal of Biological Chemistry.

[222]  J. Wess,et al.  Muscarinic Induction of Hippocampal Gamma Oscillations Requires Coupling of the M1 Receptor to Two Mixed Cation Currents , 2002, Neuron.

[223]  R. Froemke,et al.  Temporal Synaptic Tagging by Ih Activation and Actin Involvement in Long-Term Facilitation and cAMP-Induced Synaptic Enhancement , 2002, Neuron.

[224]  G. Buzsáki Theta Oscillations in the Hippocampus , 2002, Neuron.

[225]  R. Guillery,et al.  Thalamic Relay Functions and Their Role in Corticocortical Communication Generalizations from the Visual System , 2002, Neuron.

[226]  U. Kaupp,et al.  Cyclic nucleotide-gated ion channels. , 2002, Physiological reviews.

[227]  R. Nicoll,et al.  Mediation of Hippocampal Mossy Fiber Long-Term Potentiation by Presynaptic Ih Channels , 2002, Science.

[228]  平松 幹男 Ion channel remodeling in cardiac hypertrophy is prevented by blood pressure reduction without affecting heart weight increase in rats with abdominal aortic banding , 2002 .

[229]  E. Lakatta,et al.  Beta-adrenergic stimulation modulation of heart rate via synchronization of ryanodine receptor Ca2+ release. , 2002, Journal of cardiac surgery.

[230]  M. Sanguinetti,et al.  Voltage sensing and activation gating of HCN pacemaker channels. , 2002, Trends in cardiovascular medicine.

[231]  T. Ishii,et al.  Determinants of activation kinetics in mammalian hyperpolarization‐activated cation channels , 2001, The Journal of physiology.

[232]  A. A. Armoundas,et al.  Electrical and structural remodeling of the failing ventricle. , 2001, Pharmacology & therapeutics.

[233]  R. MacKinnon,et al.  Chemistry of ion coordination and hydration revealed by a K+ channel–Fab complex at 2.0 Å resolution , 2001, Nature.

[234]  Bernd Lindemann,et al.  Hyperpolarization-activated channels HCN1 and HCN4 mediate responses to sour stimuli , 2001, Nature.

[235]  S. Nattel,et al.  Arrhythmogenic ionic remodeling: adaptive responses with maladaptive consequences. , 2001, Trends in cardiovascular medicine.

[236]  E. Lakatta,et al.  Symposium VI: Calcium Homeostasis in Cardiac Myocytes: β‐Adrenergic Stimulation Modulation of Heart Rate via Synchronization of Ryanodine Receptor Ca2+ Release , 2001 .

[237]  S. Waxman Transcriptional channelopathies: An emerging class of disorders , 2001, Nature Reviews Neuroscience.

[238]  S. Siegelbaum,et al.  Regulation of Hyperpolarization-Activated Hcn Channel Gating and Camp Modulation Due to Interactions of Cooh Terminus and Core Transmembrane Regions , 2001, The Journal of general physiology.

[239]  D. DiFrancesco,et al.  C Terminus-mediated Control of Voltage and cAMP Gating of Hyperpolarization-activated Cyclic Nucleotide-gated Channels* , 2001, The Journal of Biological Chemistry.

[240]  S. Giampaoli,et al.  Heart rate as a predictor of mortality: the MATISS project. , 2001, American journal of public health.

[241]  R B Robinson,et al.  HCN2 Overexpression in Newborn and Adult Ventricular Myocytes: Distinct Effects on Gating and Excitability , 2001, Circulation research.

[242]  E. Aydar,et al.  Functional characterization of the C‐terminus of the human ether‐à‐go‐go‐related gene K+ channel (HERG) , 2001, The Journal of physiology.

[243]  A. Hoffman,et al.  Contribution of the hyperpolarization-activated current (I(h)) to membrane potential and GABA release in hippocampal interneurons. , 2001, Journal of neurophysiology.

[244]  Ira S. Cohen,et al.  MinK-Related Peptide 1 , 2001 .

[245]  D. Mckinnon,et al.  MinK-Related Peptide 1: A &bgr; Subunit for the HCN Ion Channel Subunit Family Enhances Expression and Speeds Activation , 2001, Circulation research.

[246]  S. Siegelbaum,et al.  Molecular mechanism of cAMP modulation of HCN pacemaker channels , 2001, Nature.

[247]  Dario DiFrancesco,et al.  Integrated Allosteric Model of Voltage Gating of Hcn Channels , 2001, The Journal of general physiology.

[248]  Gea-Ny Tseng,et al.  MinK-Related Peptide 1 Associates With Kv4.2 and Modulates Its Gating Function: Potential Role as &bgr; Subunit of Cardiac Transient Outward Channel? , 2001, Circulation research.

[249]  S. Siegelbaum,et al.  Properties of Hyperpolarization-Activated Pacemaker Current Defined by Coassembly of Hcn1 and Hcn2 Subunits and Basal Modulation by Cyclic Nucleotide , 2001, The Journal of general physiology.

[250]  T. Opthof,et al.  If Current and Spontaneous Activity in Mouse Embryonic Ventricular Myocytes , 2001, Circulation research.

[251]  M. Biel,et al.  Cellular expression and functional characterization of four hyperpolarization-activated pacemaker channels in cardiac and neuronal tissues. , 2001, European journal of biochemistry.

[252]  M. Biel,et al.  A Single Histidine Residue Determines the pH Sensitivity of the Pacemaker Channel HCN2* , 2001, The Journal of Biological Chemistry.

[253]  J. Tytgat,et al.  Functional Heteromerization of HCN1 and HCN2 Pacemaker Channels* , 2001, The Journal of Biological Chemistry.

[254]  Ivan Soltesz,et al.  Persistently modified h-channels after complex febrile seizures convert the seizure-induced enhancement of inhibition to hyperexcitability , 2001, Nature Medicine.

[255]  Marino Zerial,et al.  Rab proteins as membrane organizers , 2001, Nature Reviews Molecular Cell Biology.

[256]  G. Yellen,et al.  Blocker State Dependence and Trapping in Hyperpolarization-Activated Cation Channels , 2001, The Journal of general physiology.

[257]  D. Beech,et al.  TrpC1 Is a Membrane-Spanning Subunit of Store-Operated Ca2+ Channels in Native Vascular Smooth Muscle Cells , 2001, Circulation research.

[258]  U. Kaupp,et al.  Molecular diversity of pacemaker ion channels. , 2001, Annual review of physiology.

[259]  D. McCormick,et al.  On the cellular and network bases of epileptic seizures. , 2001, Annual review of physiology.

[260]  E. Macchi,et al.  Myocardial remodeling and arrhythmogenesis in moderate cardiac hypertrophy in rats. , 2001, American journal of physiology. Heart and circulatory physiology.

[261]  M. Lazdunski,et al.  KCNE2 confers background current characteristics to the cardiac KCNQ1 potassium channel , 2000, The EMBO journal.

[262]  A. Shrier,et al.  Localization and Enhanced Current Density of the Kv4.2 Potassium Channel by Interaction with the Actin-Binding Protein Filamin , 2000, The Journal of Neuroscience.

[263]  J. Magee Dendritic integration of excitatory synaptic input , 2000, Nature Reviews Neuroscience.

[264]  M. Sanguinetti,et al.  Functional Roles of Charged Residues in the Putative Voltage Sensor of the HCN2 Pacemaker Channel* , 2000, The Journal of Biological Chemistry.

[265]  J. Magee,et al.  Somatic EPSP amplitude is independent of synapse location in hippocampal pyramidal neurons , 2000, Nature Neuroscience.

[266]  L. Vaca,et al.  Mutations in the S4 domain of a pacemaker channel alter its voltage dependence , 2000, FEBS letters.

[267]  Y Shinagawa,et al.  Sustained inward current during pacemaker depolarization in mammalian sinoatrial node cells. , 2000, Circulation research.

[268]  S. Siegelbaum,et al.  Molecular and Functional Heterogeneity of Hyperpolarization-Activated Pacemaker Channels in the Mouse CNS , 2000, The Journal of Neuroscience.

[269]  B. Robertson,et al.  Hyperpolarization‐activated currents in presynaptic terminals of mouse cerebellar basket cells , 2000, The Journal of physiology.

[270]  J M Bekkers,et al.  Distribution and activation of voltage‐gated potassium channels in cell‐attached and outside‐out patches from large layer 5 cortical pyramidal neurons of the rat , 2000, The Journal of physiology.

[271]  G. Stuart,et al.  Site independence of EPSP time course is mediated by dendritic I(h) in neocortical pyramidal neurons. , 2000, Journal of neurophysiology.

[272]  Y. Yarom,et al.  Resonance, oscillation and the intrinsic frequency preferences of neurons , 2000, Trends in Neurosciences.

[273]  M. Hasselmo,et al.  Properties and role of I(h) in the pacing of subthreshold oscillations in entorhinal cortex layer II neurons. , 2000, Journal of neurophysiology.

[274]  Dario DiFrancesco,et al.  Kinetic and ionic properties of the human HCN2 pacemaker channel , 2000, Pflügers Archiv.

[275]  R. Zucker,et al.  Enhancement of synaptic transmission by cyclic AMP modulation of presynaptic Ih channels , 2000, Nature Neuroscience.

[276]  G. Gensini,et al.  Long-term treatment of spontaneously hypertensive rats with losartan and electrophysiological remodeling of cardiac myocytes. , 2000, Cardiovascular research.

[277]  Reinhard Seifert,et al.  PACEMAKER OSCILLATIONS IN HEART AND BRAIN: A KEY ROLE FOR HYPERPOLARIZATION-ACTIVATED CATION CHANNELS , 2000, Chronobiology international.

[278]  柴田 繁啓 Inhibition by genistein of the hyperpolarization-activated cation current in porcine sino-atrial node cells , 2000 .

[279]  F. Simon,et al.  Through the Looking Glass: Differential Noradenergic Modulation of Prefrontal Cortical Function , 2000 .

[280]  R. Inoue,et al.  Temperature-sensitive gating of cation current in guinea pig ileal muscle activated by hyperpolarization. , 2000, American journal of physiology. Cell physiology.

[281]  G. Zhu,et al.  B7-H1, a third member of the B7 family, co-stimulates T-cell proliferation and interleukin-10 secretion , 1999, Nature Medicine.

[282]  T. Kawarabayashi,et al.  Physiological significance of hyperpolarization-activated inward currents (Ih) in smooth muscle cells from the circular layers of pregnant rat myometrium , 1999, Pflügers Archiv.

[283]  K. Thornbury,et al.  Hyperpolarisation‐activated inward current in isolated sheep mesenteric lymphatic smooth muscle , 1999, The Journal of physiology.

[284]  M. Rocchi,et al.  The human gene coding for HCN2, a pacemaker channel of the heart. , 1999, Biochimica et biophysica acta.

[285]  H. Pape,et al.  Modulation of the hyperpolarization‐activated cation current of rat thalamic relay neurones by intracellular pH , 1999, The Journal of physiology.

[286]  H. Pape,et al.  Upregulation of the hyperpolarization‐activated cation current in rat thalamic relay neurones by acetazolamide , 1999, The Journal of physiology.

[287]  Jeffrey C. Magee Dendritic Ih normalizes temporal summation in hippocampal CA1 neurons , 1999, Nature Neuroscience.

[288]  P. Lichter,et al.  Molecular characterization of a slowly gating human hyperpolarization-activated channel predominantly expressed in thalamus, heart, and testis. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[289]  I. Soltesz,et al.  Febrile seizures in the developing brain result in persistent modification of neuronal excitability in limbic circuits , 1999, Nature Medicine.

[290]  D. Mckinnon,et al.  Distribution and prevalence of hyperpolarization-activated cation channel (HCN) mRNA expression in cardiac tissues. , 1999, Circulation research.

[291]  S. Dib-Hajj,et al.  Sodium channels and pain. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[292]  M. Biel,et al.  Differential Distribution of Four Hyperpolarization-Activated Cation Channels in Mouse Brain , 1999, Biological chemistry.

[293]  David A. McCormick,et al.  Modulation of a pacemaker current through Ca2+-induced stimulation of cAMP production , 1999, Nature Neuroscience.

[294]  E. Carmeliet Cardiac ionic currents and acute ischemia: from channels to arrhythmias. , 1999, Physiological reviews.

[295]  Daniel Johnston,et al.  Regulation of back-propagating action potentials in hippocampal neurons , 1999, Current Opinion in Neurobiology.

[296]  Martin Biel,et al.  Two pacemaker channels from human heart with profoundly different activation kinetics , 1999, The EMBO journal.

[297]  A Mugelli,et al.  Influence of postnatal-development on I(f) occurrence and properties in neonatal rat ventricular myocytes. , 1999, Cardiovascular research.

[298]  G. Tomaselli,et al.  Electrophysiological remodeling in hypertrophy and heart failure. , 1999, Cardiovascular research.

[299]  Akinori Noma,et al.  Molecular Characterization of the Hyperpolarization-activated Cation Channel in Rabbit Heart Sinoatrial Node* , 1999, The Journal of Biological Chemistry.

[300]  M. Keating,et al.  MiRP1 Forms IKr Potassium Channels with HERG and Is Associated with Cardiac Arrhythmia , 1999, Cell.

[301]  B. Santoro,et al.  The HCN Gene Family: Molecular Basis of the Hyperpolarization‐Activated Pacemaker Channels , 1999, Annals of the New York Academy of Sciences.

[302]  H. Breer,et al.  Identification of a cyclic nucleotide- and voltage-activated ion channel from insect antennae. , 1999, Insect biochemistry and molecular biology.

[303]  D DiFrancesco,et al.  Dual allosteric modulation of pacemaker (f) channels by cAMP and voltage in rabbit SA node , 1999, The Journal of physiology.

[304]  G. Demontis,et al.  Properties and functional roles of hyperpolarization‐gated currents in guinea‐pig retinal rods , 1999, The Journal of physiology.

[305]  T. Doan,et al.  Contribution of the hyperpolarization‐activated current to the resting membrane potential of rat nodose sensory neurons , 1999, The Journal of physiology.

[306]  P. Klatt,et al.  Structure and function of cGMP-dependent protein kinases. , 1999, Reviews of physiology, biochemistry and pharmacology.

[307]  L Guize,et al.  Influence of heart rate on mortality in a French population: role of age, gender, and blood pressure. , 1999, Hypertension.

[308]  G. Gisselmann,et al.  Molecular cloning of a putative voltage- and cyclic nucleotide-gated ion channel present in the antennae and eyes of Drosophila melanogaster , 1999, Invertebrate Neuroscience.

[309]  B. Swynghedauw,et al.  Molecular mechanisms of myocardial remodeling. , 1999, Physiological reviews.

[310]  J. Ruppersberg,et al.  PIP2 and PIP as determinants for ATP inhibition of KATP channels. , 1998, Science.

[311]  C. Nichols,et al.  Membrane phospholipid control of nucleotide sensitivity of KATP channels. , 1998, Science.

[312]  J. Magee Dendritic Hyperpolarization-Activated Currents Modify the Integrative Properties of Hippocampal CA1 Pyramidal Neurons , 1998, The Journal of Neuroscience.

[313]  Hiroto Takahashi,et al.  KCR1, a Membrane Protein That Facilitates Functional Expression of Non-inactivating K+ Currents Associates with Rat EAG Voltage-dependent K+Channels* , 1998, The Journal of Biological Chemistry.

[314]  U. Kaupp,et al.  Molecular identification of a hyperpolarization-activated channel in sea urchin sperm , 1998, Nature.

[315]  M. Biel,et al.  A family of hyperpolarization-activated mammalian cation channels , 1998, Nature.

[316]  Eric R Kandel,et al.  Identification of a Gene Encoding a Hyperpolarization-Activated Pacemaker Channel of Brain , 1998, Cell.

[317]  N. Spruston,et al.  Determinants of Voltage Attenuation in Neocortical Pyramidal Neuron Dendrites , 1998, The Journal of Neuroscience.

[318]  B. Chait,et al.  The structure of the potassium channel: molecular basis of K+ conduction and selectivity. , 1998, Science.

[319]  N. Thakor,et al.  Mechanism of anode break stimulation in the heart. , 1998, Biophysical journal.

[320]  D. McCormick,et al.  Periodicity of Thalamic Synchronized Oscillations: the Role of Ca2+-Mediated Upregulation of Ih , 1998, Neuron.

[321]  D. Hilgemann,et al.  Direct activation of inward rectifier potassium channels by PIP2 and its stabilization by Gβγ , 1998, Nature.

[322]  D. Clapham,et al.  Abnormal Heart Rate Regulation in GIRK4 Knockout Mice , 1998, Neuron.

[323]  D. Beuckelmann,et al.  Hyperpolarization-activated inward current in ventricular myocytes from normal and failing human hearts. , 1998, Circulation.

[324]  J. Lenfant,et al.  Characterization of a hyperpolarization‐activated current in dedifferentiated adult rat ventricular cells in primary culture , 1998, The Journal of physiology.

[325]  E. Kandel,et al.  Interactive cloning with the SH3 domain of N-src identifies a new brain specific ion channel protein, with homology to eag and cyclic nucleotide-gated channels. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[326]  R. Vertes,et al.  Brainstem-diencephalo-septohippocampal systems controlling the theta rhythm of the hippocampus. , 1997, Neuroscience.

[327]  I. Cohen,et al.  Tyrosine kinase inhibition reduces if in rabbit sinoatrial node myocytes , 1997, Pflügers Archiv.

[328]  D. Johnston,et al.  K+ channel regulation of signal propagation in dendrites of hippocampal pyramidal neurons , 1997, Nature.

[329]  J. Lenfant,et al.  Activation of f‐channels by cAMP analogues in macropatches from rabbit sino‐atrial node myocytes , 1997, The Journal of physiology.

[330]  D. McCormick,et al.  Synchronized oscillations in the inferior olive are controlled by the hyperpolarization-activated cation current I(h). , 1997, Journal of neurophysiology.

[331]  E. Accili,et al.  Differential control of the hyperpolarization‐activated current (i(f)) by cAMP gating and phosphatase inhibition in rabbit sino‐atrial node myocytes. , 1997, The Journal of physiology.

[332]  D. Paterson,et al.  Nitric oxide can increase heart rate by stimulating the hyperpolarization-activated inward current, I(f). , 1997, Circulation research.

[333]  J. Kelly,et al.  Modulation of IH by 5-HT in Neonatal Rat Motoneurones In Vitro: Mediation through a Phosphorylation Independent Action of cAMP , 1997, Neuropharmacology.

[334]  D DiFrancesco,et al.  Properties and modulation of If in newborn versus adult cardiac SA node. , 1997, The American journal of physiology.

[335]  T. Sejnowski,et al.  Spatiotemporal Patterns of Spindle Oscillations in Cortex and Thalamus , 1997, The Journal of Neuroscience.

[336]  R. Robinson,et al.  Developmental change in the voltage-dependence of the pacemaker current, if, in rat ventricle cells , 1997, Pflügers Archiv.

[337]  D. McCormick,et al.  Sleep and arousal: thalamocortical mechanisms. , 1997, Annual review of neuroscience.

[338]  C. Nichols,et al.  Inward rectifier potassium channels. , 1997, Annual review of physiology.

[339]  G. Edwards,et al.  Pharmacological characterization of the inwardly‐rectifying current in the smooth muscle cells of the rat bladder , 1996, British journal of pharmacology.

[340]  C. McBain,et al.  The hyperpolarization‐activated current (Ih) and its contribution to pacemaker activity in rat CA1 hippocampal stratum oriens‐alveus interneurones. , 1996, The Journal of physiology.

[341]  A Mugelli,et al.  Occurrence and properties of the hyperpolarization-activated current If in ventricular myocytes from normotensive and hypertensive rats during aging. , 1996, Circulation.

[342]  R. Miura,et al.  Subthreshold membrane resonance in neocortical neurons. , 1996, Journal of neurophysiology.

[343]  R. Miura,et al.  Models of subthreshold membrane resonance in neocortical neurons. , 1996, Journal of neurophysiology.

[344]  D. McCormick,et al.  What Stops Synchronized Thalamocortical Oscillations? , 1996, Neuron.

[345]  D Contreras,et al.  Synaptic responsiveness of cortical and thalamic neurones during various phases of slow sleep oscillation in cat. , 1996, The Journal of physiology.

[346]  D. Contreras,et al.  Spindle oscillation in cats: the role of corticothalamic feedback in a thalamically generated rhythm. , 1996, The Journal of physiology.

[347]  M. Tamkun,et al.  Molecular physiology of cardiac potassium channels. , 1996, Physiological reviews.

[348]  H. Pape,et al.  Queer current and pacemaker: the hyperpolarization-activated cation current in neurons. , 1996, Annual review of physiology.

[349]  D. McCormick,et al.  Spindle waves are propagating synchronized oscillations in the ferret LGNd in vitro. , 1995, Journal of neurophysiology.

[350]  P. Goldman-Rakic,et al.  Modulation of memory fields by dopamine Dl receptors in prefrontal cortex , 1995, Nature.

[351]  D. McCormick,et al.  Role of the ferret perigeniculate nucleus in the generation of synchronized oscillations in vitro. , 1995, The Journal of physiology.

[352]  D. McCormick,et al.  Synaptic and membrane mechanisms underlying synchronized oscillations in the ferret lateral geniculate nucleus in vitro. , 1995, The Journal of physiology.

[353]  P. Calabresi,et al.  Properties of the Hyperpolarization‐activated Cation Current lh in Rat Midbrain Dopaminergic Neurons , 1995, The European journal of neuroscience.

[354]  T. Hoshi,et al.  Regulation of voltage dependence of the KAT1 channel by intracellular factors , 1995, The Journal of general physiology.

[355]  D Contreras,et al.  Relations between cortical and thalamic cellular events during transition from sleep patterns to paroxysmal activity , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[356]  D. Contreras,et al.  Synchronized sleep oscillations and their paroxysmal developments , 1994, Trends in Neurosciences.

[357]  A. Davies,et al.  Intrinsic programmes of growth and survival in developing vertebrate neurons , 1994, Trends in Neurosciences.

[358]  A Mugelli,et al.  Characterization of the hyperpolarization‐activated current, I(f), in ventricular myocytes isolated from hypertensive rats. , 1994, The Journal of physiology.

[359]  Hyperpolarization-activated Na(+)-K+ current (Ih) in neocortical neurons is blocked by external proteolysis and internal TEA. , 1994, Journal of neurophysiology.

[360]  M. Devor,et al.  Hyperexcitability at sites of nerve injury depends on voltage-sensitive Na+ channels. , 1994, Journal of neurophysiology.

[361]  John T. Williams,et al.  Opioid inhibition of Ih via adenylyl cyclase , 1994, Neuron.

[362]  A. Noma,et al.  Cation‐dependent gating of the hyperpolarization‐activated cation current in the rabbit sino‐atrial node cells. , 1994, The Journal of physiology.

[363]  R. Gillis,et al.  Hyperpolarization-activated currents, IH and IKIR, in rat dorsal motor nucleus of the vagus neurons in vitro. , 1994, Journal of neurophysiology.

[364]  J. Clark,et al.  A mathematical model of a rabbit sinoatrial node cell. , 1994, The American journal of physiology.

[365]  H. Pape Specific bradycardic agents block the hyperpolarization-activated cation current in central neurons , 1994, Neuroscience.

[366]  R. McCarley,et al.  Adenosine inhibition of mesopontine cholinergic neurons: implications for EEG arousal. , 1994, Science.

[367]  D DiFrancesco,et al.  Modulation of single hyperpolarization‐activated channels (i(f)) by cAMP in the rabbit sino‐atrial node. , 1994, The Journal of physiology.

[368]  M. Bellingham,et al.  Characteristics and postnatal development of a hyperpolarization-activated inward current in rat hypoglossal motoneurons in vitro. , 1994, Journal of neurophysiology.

[369]  E. Anderson,et al.  Variation in IH, IIR, and ILEAK between acutely isolated adult rat dorsal root ganglion neurons of different size. , 1994, Journal of neurophysiology.

[370]  R. Llinás,et al.  On the cerebellum and motor learning , 1993, Current Opinion in Neurobiology.

[371]  R. Tsien,et al.  Molecular determinants of Ca2+ selectivity and ion permeation in L-type Ca2+ channels , 1993, Nature.

[372]  Hyperpolarization-activated currents in neurons of the rat basolateral amygdala. , 1993, Journal of neurophysiology.

[373]  T. Sejnowski,et al.  Thalamocortical oscillations in the sleeping and aroused brain. , 1993, Science.

[374]  R. Pearce,et al.  Hyperpolarization-activated cation current (Ih) in neurons of the medial nucleus of the trapezoid body: voltage-clamp analysis and enhancement by norepinephrine and cAMP suggest a modulatory mechanism in the auditory brain stem. , 1993, Journal of neurophysiology.

[375]  L. Pardo,et al.  Ether-à-go-go encodes a voltage-gated channel permeable to K+ and Ca2+ and modulated by cAMP , 1993, Nature.

[376]  I. Briggs,et al.  Inhibitory actions of ZENECA ZD7288 on whole‐cell hyperpolarization activated inward current (If) in guinea‐pig dissociated sinoatrial node cells , 1993, British journal of pharmacology.

[377]  M. Dekin Inward rectification and its effects on the repetitive firing properties of bulbospinal neurons located in the ventral part of the nucleus tractus solitarius. , 1993, Journal of neurophysiology.

[378]  D. Contreras,et al.  The slow (< 1 Hz) oscillation in reticular thalamic and thalamocortical neurons: scenario of sleep rhythm generation in interacting thalamic and neocortical networks , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[379]  D. McCormick,et al.  Cellular mechanisms of a synchronized oscillation in the thalamus. , 1993, Science.

[380]  D DiFrancesco,et al.  Properties of the hyperpolarization-activated current in rat hippocampal CA1 pyramidal cells. , 1993, Journal of neurophysiology.

[381]  J. Nerbonne,et al.  Hyperpolarization‐activated currents in isolated superior colliculus‐projecting neurons from rat visual cortex. , 1993, The Journal of physiology.

[382]  G. Aghajanian,et al.  LSD has high efficacy relative to serotonin in enhancing the cationic current Ih: Intracellular studies in rat facial motoneurons , 1993, Synapse.

[383]  D DiFrancesco,et al.  Pacemaker mechanisms in cardiac tissue. , 1993, Annual review of physiology.

[384]  M. Kelly,et al.  Electrophysiology of guinea‐pig supraoptic neurones: role of a hyperpolarization‐activated cation current in phasic firing. , 1993, The Journal of physiology.

[385]  B. Hille,et al.  Ionic selectivity of Ih channels of rod photoreceptors in tiger salamanders , 1992, The Journal of general physiology.

[386]  M. Steriade,et al.  Intrinsic and synaptically generated delta (1–4 Hz) rhythms in dorsal lateral geniculate neurons and their modulation by light-induced fast (30–70 Hz) events , 1992, Neuroscience.

[387]  P. M. Larkman,et al.  Ionic mechanisms mediating 5‐hydroxytryptamine‐ and noradrenaline‐evoked depolarization of adult rat facial motoneurones. , 1992, The Journal of physiology.

[388]  D. McCormick,et al.  A model of the electrophysiological properties of thalamocortical relay neurons. , 1992, Journal of neurophysiology.

[389]  H. Pape,et al.  Nitric oxide controls oscillatory activity in thalamocortical neurons , 1992, Neuron.

[390]  R. Harris-Warrick,et al.  5-HT modulation of hyperpolarization-activated inward current and calcium-dependent outward current in a crustacean motor neuron. , 1992, Journal of neurophysiology.

[391]  A. Noma,et al.  Control of the hyperpolarization‐activated cation current by external anions in rabbit sino‐atrial node cells. , 1992, The Journal of physiology.

[392]  V. Chiappinelli,et al.  An inward rectifier is present in presynaptic nerve terminals in the chick ciliary ganglion , 1992, Brain Research.

[393]  M. Steriade,et al.  Electrophysiology of a slow (0.5‐4 Hz) intrinsic oscillation of cat thalamocortical neurones in vivo. , 1992, The Journal of physiology.

[394]  H. Pape Adenosine promotes burst activity in guinea‐pig geniculocortical neurones through two different ionic mechanisms. , 1992, The Journal of physiology.

[395]  P. Reiner,et al.  Hyperpolarization-activated inward current in histaminergic tuberomammillary neurons of the rat hypothalamus. , 1991, Journal of neurophysiology.

[396]  D. McCormick,et al.  Modulation of neuronal firing mode in cat and guinea pig LGNd by histamine: possible cellular mechanisms of histaminergic control of arousal , 1991, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[397]  M. Steriade,et al.  Network modulation of a slow intrinsic oscillation of cat thalamocortical neurons implicated in sleep delta waves: cortically induced synchronization and brainstem cholinergic suppression , 1991, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[398]  I. Soltesz,et al.  Low‐frequency oscillatory activities intrinsic to rat and cat thalamocortical cells. , 1991, The Journal of physiology.

[399]  I. Soltesz,et al.  Two inward currents and the transformation of low‐frequency oscillations of rat and cat thalamocortical cells. , 1991, The Journal of physiology.

[400]  M. Rosen,et al.  Effects of protein kinase inhibitors on canine Purkinje fibre pacemaker depolarization and the pacemaker current i(f). , 1991, The Journal of physiology.

[401]  Dario DiFrancesco,et al.  Direct activation of cardiac pacemaker channels by intracellular cyclic AMP , 1991, Nature.

[402]  H. Higashi,et al.  Membrane properties of guinea pig cingulate cortical neurons in vitro. , 1991, Journal of neurophysiology.

[403]  W. Giles,et al.  Voltage clamp measurements of the hyperpolarization‐activated inward current I(f) in single cells from rabbit sino‐atrial node. , 1991, The Journal of physiology.

[404]  D DiFrancesco,et al.  The contribution of the ‘pacemaker’ current (if) to generation of spontaneous activity in rabbit sino‐atrial node myocytes. , 1991, The Journal of physiology.

[405]  D. McCormick,et al.  Functional implications of burst firing and single spike activity in lateral geniculate relay neurons , 1990, Neuroscience.

[406]  D. McCormick,et al.  Properties of a hyperpolarization‐activated cation current and its role in rhythmic oscillation in thalamic relay neurones. , 1990, The Journal of physiology.

[407]  D. McCormick,et al.  Noradrenergic and serotonergic modulation of a hyperpolarization‐activated cation current in thalamic relay neurones. , 1990, The Journal of physiology.

[408]  A. V. Maricq,et al.  Inward rectification in the inner segment of single retinal cone photoreceptors. , 1990, Journal of neurophysiology.

[409]  Ivan Soltesz,et al.  Pacemaker-like and other types of spontaneous membrane potential oscillations of thalamocortical cells , 1990, Neuroscience Letters.

[410]  A. J. Berger,et al.  Direct excitation of rat spinal motoneurones by serotonin. , 1990, The Journal of physiology.

[411]  Tomoyuki Takahashi,et al.  Inward rectification in neonatal rat spinal motoneurones. , 1990, The Journal of physiology.

[412]  T. Akasu,et al.  Cyclic AMP regulates an inward rectifying sodium‐potassium current in dissociated bull‐frog sympathetic neurones. , 1990, The Journal of physiology.

[413]  G. Buzsáki Two-stage model of memory trace formation: A role for “noisy” brain states , 1989, Neuroscience.

[414]  David A. McCormick,et al.  Noradrenaline and serotonin selectively modulate thalamic burst firing by enhancing a hyperpolarization-activated cation current , 1989, Nature.

[415]  John T. Williams,et al.  Serotonin augments the cationic current Ih in central neurons , 1989, Neuron.

[416]  W. Singer,et al.  Stimulus-specific neuronal oscillations in orientation columns of cat visual cortex. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[417]  D DiFrancesco,et al.  Muscarinic modulation of cardiac rate at low acetylcholine concentrations. , 1989, Science.

[418]  N. Hagiwara,et al.  Modulation by intracellular Ca2+ of the hyperpolarization‐activated inward current in rabbit single sino‐atrial node cells. , 1989, The Journal of physiology.

[419]  D. DiFrancesco,et al.  Muscarinic control of the hyperpolarization‐activated current (if) in rabbit sino‐atrial node myocytes. , 1988, The Journal of physiology.

[420]  D. DiFrancesco,et al.  Inhibition of the hyperpolarization‐activated current (if) induced by acetylcholine in rabbit sino‐atrial node myocytes. , 1988, The Journal of physiology.

[421]  G. Buzsáki,et al.  Nucleus basalis and thalamic control of neocortical activity in the freely moving rat , 1988, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[422]  David A. McCormick,et al.  Acetylcholine inhibits identified interneurons in the cat lateral geniculate nucleus , 1988, Nature.

[423]  N. Hagiwara,et al.  Contribution of two types of calcium currents to the pacemaker potentials of rabbit sino‐atrial node cells. , 1988, The Journal of physiology.

[424]  S. Hestrin,et al.  The properties and function of inward rectification in rod photoreceptors of the tiger salamander. , 1987, The Journal of physiology.

[425]  P. Schwindt,et al.  Anomalous rectification in neurons from cat sensorimotor cortex in vitro. , 1987, Journal of neurophysiology.

[426]  I. Weber,et al.  Crystal structure of a cyclic AMP-independent mutant of catabolite gene activator protein. , 1987, Journal of Biological Chemistry.

[427]  M. Pirchio,et al.  The ventral and dorsal lateral geniculate nucleus of the rat: intracellular recordings in vitro. , 1987, The Journal of physiology.

[428]  Å. Edman,et al.  Current activation by membrane hyperpolarization in the slowly adapting lobster stretch receptor neurone. , 1987, The Journal of physiology.

[429]  C. D. Benham,et al.  Inward rectification in freshly isolated single smooth muscle cells of the rabbit jejunum. , 1987, The Journal of physiology.

[430]  M. Deschenes,et al.  The deafferented reticular thalamic nucleus generates spindle rhythmicity. , 1987, Journal of neurophysiology.

[431]  Dario DiFrancesco,et al.  Characterization of single pacemaker channels in cardiac sino-atrial node cells , 1986, Nature.

[432]  M. Mazzanti,et al.  Properties of the hyperpolarizing‐activated current (if) in cells isolated from the rabbit sino‐atrial node. , 1986, The Journal of physiology.

[433]  M. Deschenes,et al.  Morphology and electrophysiological properties of reticularis thalami neurons in cat: in vivo study of a thalamic pacemaker , 1986, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[434]  G. Lynch,et al.  Induction of synaptic potentiation in hippocampus by patterned stimulation involves two events. , 1986, Science.

[435]  F. Crépel,et al.  Inward rectification and low threshold calcium conductance in rat cerebellar Purkinje cells. An in vitro study. , 1986, The Journal of physiology.

[436]  M. Deschenes,et al.  Abolition of spindle oscillations in thalamic neurons disconnected from nucleus reticularis thalami. , 1985, Journal of neurophysiology.

[437]  D DiFrancesco,et al.  A model of cardiac electrical activity incorporating ionic pumps and concentration changes. , 1985, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[438]  M. Deschenes,et al.  The thalamus as a neuronal oscillator , 1984, Brain Research Reviews.

[439]  M. Deschenes,et al.  Electrophysiology of neurons of lateral thalamic nuclei in cat: resting properties and burst discharges. , 1984, Journal of neurophysiology.

[440]  M Steriade,et al.  Electrophysiology of neurons of lateral thalamic nuclei in cat: mechanisms of long-lasting hyperpolarizations. , 1984, Journal of neurophysiology.

[441]  R. Llinás,et al.  Electrophysiological properties of guinea‐pig thalamic neurones: an in vitro study. , 1984, The Journal of physiology.

[442]  R. Llinás,et al.  Ionic basis for the electro‐responsiveness and oscillatory properties of guinea‐pig thalamic neurones in vitro. , 1984, The Journal of physiology.

[443]  C. Bader,et al.  Effect of changes in intra‐ and extracellular sodium on the inward (anomalous) rectification in salamander photoreceptors. , 1984, The Journal of physiology.

[444]  G. Buzsáki,et al.  Cellular bases of hippocampal EEG in the behaving rat , 1983, Brain Research Reviews.

[445]  M. Mayer,et al.  A voltage‐clamp analysis of inward (anomalous) rectification in mouse spinal sensory ganglion neurones. , 1983, The Journal of physiology.

[446]  J. Hirsch,et al.  Sleep-related variations of membrane potential in the lateral geniculate body relay neurons of the cat , 1983, Brain Research.

[447]  Paul R. Adams,et al.  Voltage-clamp analysis of muscarinic excitation in hippocampal neurons , 1982, Brain Research.

[448]  D. DiFrancesco Block and activation of the pace‐maker channel in calf Purkinje fibres: effects of potassium, caesium and rubidium , 1982, The Journal of physiology.

[449]  D DiFrancesco,et al.  A new interpretation of the pace‐maker current in calf Purkinje fibres. , 1981, The Journal of physiology.

[450]  D DiFrancesco,et al.  A study of the ionic nature of the pace‐maker current in calf Purkinje fibres. , 1981, The Journal of physiology.

[451]  H A Lindberg,et al.  Heart rate as a prognostic factor for coronary heart disease and mortality: findings in three Chicago epidemiologic studies. , 1980, American journal of epidemiology.

[452]  D. Attwell,et al.  Behaviour of the rod network in the tiger salamander retina mediated by membrane properties of individual rods , 1980, The Journal of physiology.

[453]  H. Brown,et al.  How does adrenaline accelerate the heart? , 1979, Nature.

[454]  H. Brown,et al.  Adrenaline action on rabbit sino-atrial node [proceedings]. , 1979, The Journal of physiology.

[455]  E. Prystowsky,et al.  An Analysis of the Effects of Acetylcholine on Conduction and Refractoriness in the Rabbit Sinus Node , 1979, Circulation research.

[456]  G. Fain,et al.  Contribution of a caesium-sensitive conductance increase to the rod photoresponse , 1978, Nature.

[457]  H. Brown,et al.  Membrane currents underlying activity in frog sinus venosus , 1977, The Journal of physiology.

[458]  S. Andersson,et al.  Physiological basis of the alpha rhythm , 1968 .

[459]  K. Maekawa,et al.  Intracellular study of lemniscal and non-specific synaptic interactions in thalamic ventrobasal neurons. , 1967, Brain research.

[460]  J. Changeux,et al.  ON THE NATURE OF ALLOSTERIC TRANSITIONS: A PLAUSIBLE MODEL. , 1965, Journal of molecular biology.

[461]  H. Petsche,et al.  [The significance of the rabbit's septum as a relay station between the midbrain and the hippocampus. I. The control of hippocampus arousal activity by the septum cells]. , 1962, Electroencephalography and clinical neurophysiology.