Curvature-guided adaptive TT-spline surface fitting

The problem of fitting spline surfaces to triangular mesh models is of importance in computer-aided design. Many fitting algorithms have been developed. This paper proposes several novel plug-and-play components or strategies: the use of T-splines for fitting, a curvature-guided strategy, faithful re-parameterization and initial spline knot re-placement, which can be used to enhance fitting algorithms. We also present an adaptive T-spline fitting algorithm integrating these components and strategies. Extensive experiments have been conducted to demonstrate these components. Our fitting algorithm can generate spline surfaces that well respect the geometrical features of input mesh models and have a more compact representation.

[1]  Bruno Lévy,et al.  Automatic and interactive mesh to T-spline conversion , 2006, SGP '06.

[2]  G. Greiner Surface construction based on variational principles , 1994 .

[3]  Tom Lyche,et al.  T-spline simplification and local refinement , 2004, ACM Trans. Graph..

[4]  M. Floater Mean value coordinates , 2003, Computer Aided Geometric Design.

[5]  Ang Yan Sheng,et al.  Discrete Differential Geometry , 2017 .

[6]  Hans-Peter Seidel,et al.  Ridge-Valley Lines on Meshes via Implicit Surface Fitting , 2004 .

[7]  Helmut Pottmann,et al.  Fitting B-spline curves to point clouds by curvature-based squared distance minimization , 2006, TOGS.

[8]  Günther Greiner,et al.  Interpolating and approximating scattered 3D-data with hierarchical tensor product B-splines , 2010 .

[9]  Kouki Watanabe,et al.  Detection of Salient Curvature Features on Polygonal Surfaces , 2001, Comput. Graph. Forum.

[10]  Ahmad H. Nasri,et al.  T-splines and T-NURCCs , 2003, ACM Trans. Graph..

[11]  William H. Press,et al.  The Art of Scientific Computing Second Edition , 1998 .

[12]  Josef Hoschek,et al.  Smooth B-spline surface approximation to scattered data , 1996 .

[13]  Josef Hoschek,et al.  Intrinsic parametrization for approximation , 1988, Comput. Aided Geom. Des..

[14]  Marc Levoy,et al.  Fitting smooth surfaces to dense polygon meshes , 1996, SIGGRAPH.

[15]  François Blais Review of 20 years of range sensor development , 2004, J. Electronic Imaging.

[16]  Hong Qin,et al.  Manifold T-Spline , 2006, GMP.

[17]  H. Seidel,et al.  Ridge-valley lines on meshes via implicit surface fitting , 2004, SIGGRAPH 2004.

[18]  Matthias Eck,et al.  Automatic reconstruction of B-spline surfaces of arbitrary topological type , 1996, SIGGRAPH.

[19]  Kai Hormann,et al.  Surface Parameterization: a Tutorial and Survey , 2005, Advances in Multiresolution for Geometric Modelling.

[20]  L. Piegl,et al.  The NURBS Book , 1995, Monographs in Visual Communications.

[21]  Yimin Wang,et al.  Adaptive T-spline surface fitting to z-map models , 2005, GRAPHITE '05.

[22]  Nicholas S. North,et al.  T-spline simplification and local refinement , 2004, SIGGRAPH 2004.

[23]  W. Press,et al.  Numerical Recipes in C++: The Art of Scientific Computing (2nd edn)1 Numerical Recipes Example Book (C++) (2nd edn)2 Numerical Recipes Multi-Language Code CD ROM with LINUX or UNIX Single-Screen License Revised Version3 , 2003 .

[24]  Gábor Renner,et al.  Advanced surface fitting techniques , 2002, Comput. Aided Geom. Des..

[25]  Shi-Min Hu,et al.  Surface fitting based on a feature sensitive parametrization , 2006, Comput. Aided Des..

[26]  Mark Meyer,et al.  Implicit fairing of irregular meshes using diffusion and curvature flow , 1999, SIGGRAPH.

[27]  Hans-Peter Seidel,et al.  Fast, robust, and faithful methods for detecting crest lines on meshes , 2008, Comput. Aided Geom. Des..