Nanocrystalline-silicon superlattice produced by controlled recrystallization

Nanocrystalline-silicon superlattices are produced by controlled recrystallization of amorphous-Si/SiO2 multilayers. The recrystallization is performed by a two-step procedure: rapid thermal annealing at 600–1000 °C, and furnace annealing at 1050 °C. Transmission electron microscopy, Raman scattering, x-ray and electron diffraction, and photoluminescence spectroscopy show an ordered structure with Si nanocrystals confined between SiO2 layers. The size of the Si nanocrystals is limited by the thickness of the a-Si layer, the shape is nearly spherical, and the orientation is random. The luminescence from the nc-Si superlattices is demonstrated and studied.

[1]  D. Hall,et al.  A Si‐based light‐emitting diode with room‐temperature electroluminescence at 1.1 eV , 1996 .

[2]  Jeff F. Young,et al.  Light Scattering in Semiconductor Structures and Superlattices , 1991 .

[3]  D. J. Lockwood,et al.  Quantum confinement and light emission in SiO2/Si superlattices , 1995, Nature.

[4]  L. Canham Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers , 1990 .

[5]  Intrinsic band-edge photoluminescence from silicon clusters at room temperature. , 1996, Physical review. B, Condensed matter.

[6]  P. F. Szajowski,et al.  Quantum Confinement in Size-Selected, Surface-Oxidized Silicon Nanocrystals , 1993, Science.

[7]  Rolf E. Hummel,et al.  Novel technique for preparing porous silicon , 1992 .

[8]  Friedman,et al.  Dimensions of luminescent oxidized and porous silicon structures. , 1994, Physical review letters.

[9]  B. Abeles,et al.  Crystallization kinetics of amorphous Si/SiO2 superlattice structures , 1988 .

[10]  Philippe M. Fauchet,et al.  The effects of microcrystal size and shape on the one phonon Raman spectra of crystalline semiconductors , 1986 .

[11]  G. Davies,et al.  The optical properties of luminescence centres in silicon , 1989 .

[12]  Tsutomu Shimizu-Iwayama,et al.  Visible photoluminescence in Si+‐implanted thermal oxide films on crystalline Si , 1994 .

[13]  Philippe M. Fauchet,et al.  Photoluminescence and electroluminescence from porous silicon , 1996 .

[14]  Takeda,et al.  Theory of the quantum confinement effect on excitons in quantum dots of indirect-gap materials. , 1992, Physical review. B, Condensed matter.

[15]  A. Alivisatos Semiconductor Clusters, Nanocrystals, and Quantum Dots , 1996, Science.

[16]  Philippe M. Fauchet,et al.  Stable and efficient electroluminescence from a porous silicon‐based bipolar device , 1996 .

[17]  H. Ogawa,et al.  Quantum size effects on photoluminescence in ultrafine Si particles , 1990 .