Adenovirus DNA replication.

[1]  A. Brenkman,et al.  Molecular Architecture of Adenovirus DNA Polymerase and Location of the Protein Primer , 2002, Journal of Virology.

[2]  L. Meijer,et al.  Recruitment of the priming protein pTP and DNA binding occur by overlapping Oct‐1 POU homeodomain surfaces , 2002, The EMBO journal.

[3]  A. Brenkman,et al.  The (I/Y)XGG Motif of Adenovirus DNA Polymerase Affects Template DNA Binding and the Transition from Initiation to Elongation* , 2001, The Journal of Biological Chemistry.

[4]  R. Hay,et al.  Role of conserved residues in the activity of adenovirus preterminal protein. , 2001, The Journal of general virology.

[5]  Thomas A. Steitz,et al.  Structure of the Replicating Complex of a Pol α Family DNA Polymerase , 2001, Cell.

[6]  P. Tucker,et al.  The Formation of a Flexible DNA-binding Protein Chain Is Required for Efficient DNA Unwinding and Adenovirus DNA Chain Elongation* , 2000, The Journal of Biological Chemistry.

[7]  J. Naismith,et al.  Identification of Conserved Residues Contributing to the Activities of Adenovirus DNA Polymerase , 2000, Journal of Virology.

[8]  J. Weber,et al.  The effect of mutant peptide cofactors on adenovirus protease activity and virus infection. , 2000, Virology.

[9]  P. Vliet,et al.  Mechanism of DNA replication in eukaryotic cells: cellular host factors stimulating adenovirus DNA replication. , 1999 .

[10]  Catherine H. Botting,et al.  Characterisation of the adenovirus preterminal protein and its interaction with the POU homeodomain of NFIII (Oct-1) , 1999, Nucleic Acids Res..

[11]  L. Blanco,et al.  Role of the "YxGG/A" motif of Phi29 DNA polymerase in protein-primed replication. , 1999, Journal of molecular biology.

[12]  J. Weber,et al.  Adenovirus endopeptidase and papain are inhibited by the same agents. , 1998, Antiviral research.

[13]  L. Blanco,et al.  Role of the first aspartate residue of the "YxDTDS" motif of phi29 DNA polymerase as a metal ligand during both TP-primed and DNA-primed DNA synthesis. , 1998, Journal of molecular biology.

[14]  P. Tucker,et al.  ATP-independent DNA unwinding by the adenovirus single-stranded DNA binding protein requires a flexible DNA binding loop. , 1998, Journal of molecular biology.

[15]  J. Engler,et al.  Adenovirus Preterminal Protein Binds to the CAD Enzyme at Active Sites of Viral DNA Replication on the Nuclear Matrix , 1998, Journal of Virology.

[16]  R. Hay,et al.  Adenovirus DNA polymerase: domain organisation and interaction with preterminal protein. , 1998, Nucleic acids research.

[17]  T. Steitz,et al.  Structural biology: A mechanism for all polymerases , 1998, Nature.

[18]  P. C. van der Vliet,et al.  Dissociation of the Protein Primer and DNA Polymerase after Initiation of Adenovirus DNA Replication* , 1997, The Journal of Biological Chemistry.

[19]  R. Hay,et al.  Role of preterminal protein processing in adenovirus replication , 1997, Journal of virology.

[20]  T. Steitz,et al.  Crystal Structure of a pol α Family Replication DNA Polymerase from Bacteriophage RB69 , 1997, Cell.

[21]  P. Tucker,et al.  Multimerization of the adenovirus DNA‐binding protein is the driving force for ATP‐independent DNA unwinding during strand displacement synthesis , 1997, The EMBO journal.

[22]  H. V. van Leeuwen,et al.  The Oct-1 POU Homeodomain Stabilizes the Adenovirus Preinitiation Complex via a Direct Interaction with the Priming Protein and Is Displaced when the Replication Fork Passes* , 1997, The Journal of Biological Chemistry.

[23]  R. Hay,et al.  Domain organization of the adenovirus preterminal protein , 1997, Journal of virology.

[24]  C. Rancourt,et al.  Mutagenesis of conserved residues of the adenovirus protease. , 1996, Virology.

[25]  P. C. van der Vliet,et al.  Two regions within the DNA binding domain of nuclear factor I interact with DNA and stimulate adenovirus DNA replication independently , 1996, Molecular and cellular biology.

[26]  E. Winnacker,et al.  CTF5--a new transcriptional activator of the NFI/CTF family. , 1996, Nucleic acids research.

[27]  J. Engler,et al.  Tyrosine kinase-dependent release of an adenovirus preterminal protein complex from the nuclear matrix , 1996, Journal of virology.

[28]  A. Helenius,et al.  The role of the adenovirus protease on virus entry into cells. , 1996, The EMBO journal.

[29]  R. Sweet,et al.  Crystal structure of the human adenovirus proteinase with its 11 amino acid cofactor. , 1996, The EMBO journal.

[30]  M. Cotten,et al.  The adenovirus protease is required for virus entry into host cells. , 1995, Virology.

[31]  G. Kitchingman Mutations in the adenovirus-encoded single-stranded DNA binding protein that result in altered accumulation of early and late viral RNAs. , 1995, Virology.

[32]  H. V. van Leeuwen,et al.  Mutation of the Oct-1 POU-specific recognition helix leads to altered DNA binding and influences enhancement of adenovirus DNA replication. , 1995, Nucleic acids research.

[33]  D. Matthews,et al.  Adenovirus protein-protein interactions: molecular parameters governing the binding of protein VI to hexon and the activation of the adenovirus 23K protease. , 1995, The Journal of general virology.

[34]  P. Tucker,et al.  Crystallization and preliminary X-ray crystallographic studies on the adenovirus ssDNA binding protein in complex with ssDNA. , 1995, Journal of structural biology.

[35]  M. Giacca,et al.  Stimulation of the adenovirus major late promoter in vitro by transcription factor USF is enhanced by the adenovirus DNA binding protein , 1994, Journal of virology.

[36]  V. Mautner,et al.  Phylogenetic relationships among adenovirus serotypes. , 1994, Virology.

[37]  A. King,et al.  A precursor terminal protein‐trinucleotide intermediate during initiation of adenovirus DNA replication: regeneration of molecular ends in vitro by a jumping back mechanism. , 1994, The EMBO journal.

[38]  R. Gronostajski,et al.  Identification of a conserved oxidation-sensitive cysteine residue in the NFI family of DNA-binding proteins. , 1994, The Journal of biological chemistry.

[39]  N. Mermod,et al.  Targeting of DNA polymerase to the adenovirus origin of DNA replication by interaction with nuclear factor I. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[40]  H. Chen,et al.  Biochemical characterization of a temperature-sensitive adenovirus DNA polymerase. , 1994, Virology.

[41]  R. Hay,et al.  Activation of adenovirus-coded protease and processing of preterminal protein , 1994, Journal of virology.

[42]  F. Coenjaerts,et al.  The Oct‐1 POU domain stimulates adenovirus DNA replication by a direct interaction between the viral precursor terminal protein‐DNA polymerase complex and the POU homeodomain. , 1994, The EMBO journal.

[43]  D. Brough,et al.  Identification of a high-molecular-weight cellular protein complex containing the adenovirus DNA binding protein. , 1994, Virology.

[44]  P. Tucker,et al.  Crystal structure of the adenovirus DNA binding protein reveals a hook‐on model for cooperative DNA binding. , 1994, The EMBO journal.

[45]  E. Winnacker,et al.  Transcriptional activation by CTF proteins is mediated by a bipartite low-proline domain. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[46]  Juli D. Klemm,et al.  Crystal structure of the Oct-1 POU domain bound to an octamer site: DNA recognition with tethered DNA-binding modules , 1994, Cell.

[47]  R. Hay,et al.  Adenovirus DNA binding protein: helix destabilising properties. , 1994, Nucleic acids research.

[48]  C. Rancourt,et al.  Identification of active-site residues of the adenovirus endopeptidase. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[49]  P. C. van der Vliet,et al.  Helix-destabilizing properties of the adenovirus DNA-binding protein , 1994, Journal of virology.

[50]  M. Ramachandra,et al.  Phosphorylation-dependent interaction of adenovirus preterminal protein with the viral origin of DNA replication. , 1994, The Journal of biological chemistry.

[51]  W. van Driel,et al.  Replication of adenovirus DNA in vitro is ATP‐independent , 1994, FEBS letters.

[52]  D. Brough,et al.  Phosphorylation of the adenovirus DNA-binding protein and epitope mapping of monoclonal antibodies against it. , 1993, Virology.

[53]  D. Brough,et al.  Multiple functions of the adenovirus DNA-binding protein are required for efficient viral DNA synthesis. , 1993, Virology.

[54]  M. Ramachandra,et al.  Adenovirus DNA polymerase is phosphorylated by a stably associated histone H1 kinase. , 1993, The Journal of biological chemistry.

[55]  P. Hearing,et al.  The NFIII/OCT-1 binding site stimulates adenovirus DNA replication in vivo and is functionally redundant with adjacent sequences , 1993, Journal of virology.

[56]  P. C. van der Vliet,et al.  The adenovirus DNA binding protein enhances intermolecular DNA renaturation but inhibits intramolecular DNA renaturation. , 1993, Nucleic acids research.

[57]  J. Engler,et al.  Adenovirus precursor to terminal protein interacts with the nuclear matrix in vivo and in vitro , 1993, Journal of virology.

[58]  P. C. van der Vliet,et al.  The adenovirus terminal protein influences binding of replication proteins and changes the origin structure. , 1993, Nucleic acids research.

[59]  P. C. van der Vliet,et al.  The adenovirus DNA binding protein effects the kinetics of DNA replication by a mechanism distinct from NFI or Oct-1. , 1993, Nucleic acids research.

[60]  I. Lehman,et al.  Herpes simplex virus type 1 ICP8: helix-destabilizing properties , 1993, Journal of virology.

[61]  C. Rancourt,et al.  Isolation and properties of adenovirus type 2 proteinase. , 1993, The Journal of biological chemistry.

[62]  R. Hay,et al.  The adenovirus protease is activated by a virus-coded disulphide-linked peptide , 1993, Cell.

[63]  M. Ramachandra,et al.  Adenovirus DNA polymerase is a phosphoprotein. , 1993, The Journal of biological chemistry.

[64]  C. Anderson,et al.  Viral DNA and a viral peptide can act as cofactors of adenovirus virion proteinase activity , 1993, Nature.

[65]  J. Sussenbach,et al.  Analysis of the adenovirus type 5 terminal protein precursor and DNA polymerase by linker insertion mutagenesis , 1993, Journal of virology.

[66]  J. Engler,et al.  Mutations in two cysteine-histidine-rich clusters in adenovirus type 2 DNA polymerase affect DNA binding , 1992, Journal of virology.

[67]  D. Klessig,et al.  Characterization of the nucleic acid binding region of adenovirus DNA binding protein by partial proteolysis and photochemical cross-linking. , 1992, The Journal of biological chemistry.

[68]  U. Hübscher,et al.  DNA unwinding activity of replication protein A , 1992, FEBS letters.

[69]  A. Arnberg,et al.  Structural alterations of double-stranded DNA in complex with the adenovirus DNA-binding protein. Implications for its function in DNA replication. , 1992, Journal of molecular biology.

[70]  E. Winnacker,et al.  Nuclear factor I (NF I) binds to an NF I-type site but not to the CCAAT site in the human alpha-globin gene promoter. , 1992, The Journal of biological chemistry.

[71]  D. Klessig,et al.  A zinc-binding motif located between amino acids 273 and 286 in the adenovirus DNA-binding protein is necessary for ssDNA binding. , 1992, Virology.

[72]  D. Coen,et al.  A point mutation within a distinct conserved region of the herpes simplex virus DNA polymerase gene confers drug resistance , 1992, Journal of virology.

[73]  R. Hay,et al.  Recognition of the adenovirus type 2 origin of DNA replication by the virally encoded DNA polymerase and preterminal proteins. , 1992, The EMBO journal.

[74]  P. C. van der Vliet,et al.  Nuclear factor I enhances adenovirus DNA replication by increasing the stability of a preinitiation complex. , 1992, The EMBO journal.

[75]  M. Wells,et al.  The DNA-binding domain of nuclear factor I is sufficient to cooperate with the adenovirus type 2 DNA-binding protein in viral DNA replication. , 1991, The Journal of general virology.

[76]  C. Verrijzer,et al.  POU proteins bend DNA via the POU‐specific domain. , 1991, The EMBO journal.

[77]  R. Hay,et al.  Identification of two distinct regions within the adenovirus minimal origin of replication that are required for adenovirus type 4 DNA replication in vitro , 1991, Journal of virology.

[78]  J. Engler,et al.  Mutagenesis of conserved region I in the DNA polymerase from human adenovirus serotype 2. , 1991, Virology.

[79]  S. Pettit,et al.  Linker insertion mutations in the adenovirus preterminal protein that affect DNA replication activity in vivo and in vitro , 1991, Journal of virology.

[80]  G. Pruijn,et al.  Enhancement of DNA replication by transcription factors NFI and NFIII/Oct-1 depends critically on the positions of their binding sites in the adenovirus origin of replication. , 1991, Biochimica et biophysica acta.

[81]  R. Hay,et al.  Replication of adenovirus type 4 DNA by a purified fraction from infected cells. , 1991, Nucleic acids research.

[82]  R. Hay,et al.  Interactions between the adenovirus type 2 DNA polymerase and the DNA binding domain of nuclear factor I. , 1990, The New biologist.

[83]  C. Verrijzer,et al.  Transcription factors NFI and NFIII/oct-1 function independently, employing different mechanisms to enhance adenovirus DNA replication , 1990, Journal of virology.

[84]  N. Mermod,et al.  Protein-protein interactions between adenovirus DNA polymerase and nuclear factor I mediate formation of the DNA replication preinitiation complex. , 1990, The Journal of biological chemistry.

[85]  T. Shenk,et al.  Adenovirus terminal protein mediates both nuclear matrix association and efficient transcription of adenovirus DNA. , 1990, Genes & development.

[86]  C. Verrijzer,et al.  The DNA binding domain (POU domain) of transcription factor oct‐1 suffices for stimulation of DNA replication. , 1990, The EMBO journal.

[87]  C. Watson,et al.  Expression of adenovirus type 2 DNA polymerase in insect cells infected with a recombinant baculovirus. , 1990, Nucleic acids research.

[88]  G. Neale,et al.  Conserved region 3 of the adenovirus type 5 DNA-binding protein is important for interaction with single-stranded DNA , 1990, Journal of virology.

[89]  R. Cortese,et al.  Amino‐terminal domain of NF1 binds to DNA as a dimer and activates adenovirus DNA replication. , 1990, The EMBO journal.

[90]  M. Hsu,et al.  Involvement of topoisomerases in replication, transcription, and packaging of the linear adenovirus genome , 1990, Journal of virology.

[91]  T. Shenk,et al.  Topoisomerase I and II cleavage of adenovirus DNA in vivo: both topoisomerase activities appear to be required for adenovirus DNA replication , 1990, Journal of virology.

[92]  P. C. van der Vliet,et al.  Adenovirus DNA-binding protein forms a multimeric protein complex with double-stranded DNA and enhances binding of nuclear factor I , 1990, Journal of virology.

[93]  S. Pettit,et al.  Mutations of the precursor to the terminal protein of adenovirus serotypes 2 and 5 , 1989, Journal of virology.

[94]  P. Talbot,et al.  Characterization of the adenovirus proteinase: substrate specificity. , 1989, The Journal of general virology.

[95]  E. Winnacker,et al.  Structural and functional organization of a porcine gene coding for nuclear factor I. , 1989, Biochemistry.

[96]  E. A. O'neill,et al.  The proline-rich transcriptional activator of CTF/NF-I is distinct from the replication and DNA binding domain , 1989, Cell.

[97]  M. Chen,et al.  Dissection of functional domains of adenovirus DNA polymerase by linker-insertion mutagenesis. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[98]  A. Arnberg,et al.  HeLa nuclear protein recognizing DNA termini and translocating on DNA forming a regular DNA-multimeric protein complex. , 1989, Journal of molecular biology.

[99]  R. Hay,et al.  Co‐operative interactions between NFI and the adenovirus DNA binding protein at the adenovirus origin of replication. , 1989, The EMBO journal.

[100]  N. Dathan,et al.  Anti-OTF-1 antibodies inhibit NFIII stimulation of in vitro adenovirus DNA replication. , 1989, Nucleic acids research.

[101]  G. Neale,et al.  Biochemical analysis of adenovirus type 5 DNA-binding protein mutants. , 1989, The Journal of biological chemistry.

[102]  R. Hay,et al.  Recognition mechanisms in the synthesis of animal virus DNA. , 1989, The Biochemical journal.

[103]  R. Padmanabhan,et al.  Nuclear transport of adenovirus DNA polymerase is facilitated by interaction with preterminal protein , 1988, Cell.

[104]  G. Ruvkun,et al.  The POU domain: a large conserved region in the mammalian pit-1, oct-1, oct-2, and Caenorhabditis elegans unc-86 gene products. , 1988, Genes & development.

[105]  W. Herr,et al.  The ubiquitous octamer-binding protein Oct-1 contains a POU domain with a homeo box subdomain. , 1988, Genes & development.

[106]  J. Sussenbach,et al.  The binding of in vitro synthesized adenovirus DNA binding protein to single‐stranded DNA is stimulated by zinc ions , 1988, FEBS Letters.

[107]  R. Cortese,et al.  Purification of a NF1‐like DNA‐binding protein from rat liver and cloning of the corresponding cDNA. , 1988, The EMBO journal.

[108]  E. A. O'neill,et al.  Transcription factor OTF-1 is functionally identical to the DNA replication factor NF-III. , 1988, Science.

[109]  S. Pettit,et al.  The precise structure and coding capacity of mRNAs from early region 2B of human adenovirus serotype 2. , 1988, Virology.

[110]  Nicolas Mermod,et al.  A family of human CCAAT-box-binding proteins active in transcription and DNA replication: cloning and expression of multiple cDNAs , 1988, Nature.

[111]  J. Hurwitz,et al.  Initiation of adenovirus DNA replication. II. Structural requirements using synthetic oligonucleotide adenovirus templates. , 1988, The Journal of biological chemistry.

[112]  R. Hay,et al.  DNA sequences required for the initiation of adenovirus type 4 DNA replication in vitro. , 1988, Journal of molecular biology.

[113]  H. Stunnenberg,et al.  High expression of functional adenovirus DNA polymerase and precursor terminal protein using recombinant vaccinia virus. , 1988, Nucleic acids research.

[114]  J. Sussenbach,et al.  The genes encoding the DNA binding protein and the 23K protease of adenovirus types 40 and 41. , 1988, Virology.

[115]  S. Pettit,et al.  Adenovirus preterminal protein synthesized in COS cells from cloned DNA is active in DNA replication in vitro , 1988, Journal of virology.

[116]  E. A. O'neill,et al.  Purification and characterization of nuclear factor III (origin recognition protein C), a sequence-specific DNA binding protein required for efficient initiation of adenovirus DNA replication. , 1988, The Journal of biological chemistry.

[117]  J. Engler,et al.  Expression of enzymatically active adenovirus DNA polymerase from cloned DNA requires sequences upstream of the main open reading frame. , 1987, Virology.

[118]  E. de Vries,et al.  Incorporation of 5-bromodeoxycytidine in the adenovirus 2 replication origin interferes with nuclear factor 1 binding. , 1987, Nucleic acids research.

[119]  R. Wides,et al.  Adenovirus origin of DNA replication: sequence requirements for replication in vitro , 1987, Molecular and cellular biology.

[120]  E. A. O'neill,et al.  Sequence-specific interactions between cellular DNA-binding proteins and the adenovirus origin of DNA replication , 1987, Molecular and cellular biology.

[121]  Robert Tjian,et al.  A cellular DNA-binding protein that activates eukaryotic transcription and DNA replication , 1987, Cell.

[122]  W. Driel,et al.  Contactpoint analysis of the HeLa nuclear factor I recognition site reveals symmetrical binding at one side of the DNA helix. , 1987 .

[123]  H. Ginsberg,et al.  Codon insertion mutants of the adenovirus terminal protein. , 1986, Proceedings of the National Academy of Sciences of the United States of America.

[124]  G. Pruijn,et al.  Nuclear factor III, a novel sequence-specific DNA-binding protein from HeLa cells stimulating adenovirus DNA replication , 1986, Nature.

[125]  J. Hurwitz,et al.  The adenovirus DNA binding protein and adenovirus DNA polymerase interact to catalyze elongation of primed DNA templates. , 1986, The Journal of biological chemistry.

[126]  M. Tremblay,et al.  Role of the nuclear matrix in adenovirus maturation. , 1986, Virus research.

[127]  J. Hurwitz,et al.  Reconstruction of adenovirus replication origins with a human nuclear factor I binding site. , 1986, The Journal of biological chemistry.

[128]  R. Hay,et al.  Viable viruses with deletions in the left inverted terminal repeat define the adenovirus origin of DNA replication. , 1986, The Journal of general virology.

[129]  R. Hay,et al.  Origin of adenovirus DNA replication. Role of the nuclear factor I binding site in vivo. , 1985, Journal of molecular biology.

[130]  G. Kitchingman Sequence of the DNA-binding protein of a human subgroup E adenovirus (type 4): comparisons with subgroup A (type 12), subgroup B (type 7), and subgroup C (type 5). , 1985, Virology.

[131]  Jacques H. van Boom,et al.  Adenovirus DNA replication in vitro: site-directed mutagenesis of the nuclear factor I binding site of the Ad2 origin , 1985, Nucleic Acids Res..

[132]  W. Driel,et al.  Recognition site of nuclear factor I, a sequence‐specific DNA‐binding protein from HeLa cells that stimulates adenovirus DNA replication. , 1985, The EMBO journal.

[133]  R. Hay The origin of adenovirus DNA replication: minimal DNA sequence requirement in vivo. , 1985, The EMBO journal.

[134]  J. Hurwitz,et al.  Properties of the adenovirus DNA polymerase. , 1984, The Journal of biological chemistry.

[135]  J. Hurwitz,et al.  Protein-primed replication of plasmids containing the terminus of the adenovirus genome. II. Purification and characterization of a host protein required for the replication of DNA templates devoid of the terminal protein. , 1984, The Journal of biological chemistry.

[136]  N. Stow,et al.  Replication of adenovirus mini-chromosomes. , 1984, Journal of molecular biology.

[137]  F. Tamanoi,et al.  DNA sequences required for the in vitro replication of adenovirus DNA. , 1984, Proceedings of the National Academy of Sciences of the United States of America.

[138]  R. Wides,et al.  Structure and function of the adenovirus origin of replication , 1984, Cell.

[139]  G. Antoine,et al.  A size analysis of the adenovirus replicon. , 1984, The EMBO journal.

[140]  B. Stillman The replication of adenovirus DNA with purified proteins , 1983, Cell.

[141]  F. Tamanoi,et al.  Initiation of adenovirus DNA replication in vitro requires a specific DNA sequence. , 1983, Proceedings of the National Academy of Sciences of the United States of America.

[142]  J. Hurwitz,et al.  Specific binding of a cellular DNA replication protein to the origin of replication of adenovirus DNA. , 1983, Proceedings of the National Academy of Sciences of the United States of America.

[143]  T. M. Cao,et al.  Molecular processing of adenovirus proteins. , 1983, The Journal of biological chemistry.

[144]  J. Hurwitz,et al.  Adenovirus DNA replication in vitro: synthesis of full-length DNA with purified proteins. , 1983, Proceedings of the National Academy of Sciences of the United States of America.

[145]  W. Driel,et al.  Replication of origin containing adenovirus DNA fragments that do not carry the terminal protein , 1983 .

[146]  M. Horwitz,et al.  Effects of the adenovirus H5ts125 and H5ts107 DNA binding proteins on DNA replication in vitro. , 1983, Virology.

[147]  F. Tamanoi,et al.  Purification of an adenovirus-coded DNA polymerase that is required for initiation of DNA replication , 1982, Cell.

[148]  J. Hurwitz,et al.  Adenovirus DNA replication in vitro: identification of a host factor that stimulates synthesis of the preterminal protein-dCMP complex. , 1982, Proceedings of the National Academy of Sciences of the United States of America.

[149]  B. Stillman,et al.  Conserved Sequences at the Origin of Adenovirus DNA Replication , 1982, Journal of virology.

[150]  N. Stow The infectivity of adenovirus genomes lacking DNA sequences from their left-hand termini. , 1982, Nucleic acids research.

[151]  J. Hurwitz,et al.  Separation of the adenovirus terminal protein precursor from its associated DNA polymerase: role of both proteins in the initiation of adenovirus DNA replication. , 1982, Proceedings of the National Academy of Sciences of the United States of America.

[152]  J. Hurwitz,et al.  Adenoviral protein-primed initiation of DNA chains in vitro. , 1982, Proceedings of the National Academy of Sciences of the United States of America.

[153]  F. Tamanoi,et al.  Function of adenovirus terminal protein in the initiation of DNA replication. , 1982, Proceedings of the National Academy of Sciences of the United States of America.

[154]  J. Hurwitz,et al.  Adenovirus DNA replication in vitro: purification of the terminal protein in a functional form. , 1981, Proceedings of the National Academy of Sciences of the United States of America.

[155]  B. Stillman,et al.  Identification of the gene and mRNA for the adenovirus terminal protein precursor , 1981, Cell.

[156]  J. Hurwitz,et al.  Replication of adenovirus DNA-protein complex with purified proteins. , 1981, Proceedings of the National Academy of Sciences of the United States of America.

[157]  E. Winnacker,et al.  Initiation of adenovirus DNA replication , 1980, Journal of virology.

[158]  S. Desiderio,et al.  Adenovirus DNA replication in vitro: characterization of a protein covalently linked to nascent DNA strands. , 1980, Proceedings of the National Academy of Sciences of the United States of America.

[159]  A. Levine,et al.  A cleavage product of the adenovirus DNA binding protein is active in DNA replication in vitro. , 1980, Virology.

[160]  M. Challberg,et al.  Adenovirus DNA replication in vitro: origin and direction of daughter strand synthesis. , 1979, Journal of molecular biology.

[161]  A. Levine,et al.  Structure-function relationships of the adenovirus DNA-binding protein. , 1979, The Journal of biological chemistry.

[162]  M. Challberg,et al.  Adenovirus DNA replication in vitro. , 1979, Proceedings of the National Academy of Sciences of the United States of America.

[163]  T. Itoh,et al.  Involvement of DNA gyrase in bacteriophage T7 DNA replication , 1977, Nature.

[164]  A. Levine,et al.  DNA-binding proteins specific for cells infected by adenovirus. , 1973, Nature: New biology.

[165]  A. J. Robinson,et al.  A circula DNA-protein complex from adenoviruses. , 1973, Virology.

[166]  C. Knopf Evolution of Viral DNA-Dependent DNA Polymerases , 2004, Virus Genes.

[167]  K. Leppard,et al.  A Comparative Analysis of the Phosphorylation and Biochemical Properties of Wild Type and Host Range Variant DNA Binding Proteins of Human Adenovirus 5 , 2004, Virus Genes.

[168]  P. C. van der Vliet,et al.  Adenovirus DNA replication. , 1995, Current topics in microbiology and immunology.

[169]  R. Hay,et al.  Molecular interactions during adenovirus DNA replication. , 1995, Current topics in microbiology and immunology.

[170]  F. Coenjaerts,et al.  Early dissociation of nuclear factor I from the origin during initiation of adenovirus DNA replication studied by origin immobilization. , 1994, Nucleic acids research.

[171]  T. Steitz,et al.  Function and structure relationships in DNA polymerases. , 1994, Annual review of biochemistry.

[172]  M. Salas,et al.  Protein-priming of DNA replication. , 1991, Annual review of biochemistry.

[173]  M. Challberg,et al.  Animal virus DNA replication. , 1989, Annual review of biochemistry.

[174]  B. Stillman,et al.  Initiation of eukaryotic DNA replication in vitro. , 1988, BioEssays : news and reviews in molecular, cellular and developmental biology.

[175]  M. Challberg,et al.  Template requirements for the initiation of adenovirus DNA replication. , 1984, Proceedings of the National Academy of Sciences of the United States of America.

[176]  B. Stillman The replication of adenovirus DNA , 1983 .