Comparison between Kirchhoff index and the Laplacian-energy-like invariant

Abstract Let G be a connected graph of order n with Laplacian eigenvalues μ 1 ⩾ μ 2 ⩾ ⋯ ⩾ μ n - 1 > μ n = 0 . The Kirchhoff index and the Laplacian-energy-like invariant of G are defined as Kf = n ∑ k = 1 n - 1 1 / μ k and LEL = ∑ k = 1 n - 1 μ k , respectively. We compare Kf and LEL and establish two sufficient conditions under which LEL Kf . The connected graphs of order n with nine greatest Kirchhoff indices are determined; for these LEL > Kf holds.

[1]  Aleksandar Ilic On the ordering of trees by the Laplacian coefficients , 2009 .

[2]  José Luis Palacios Closed‐form formulas for Kirchhoff index , 2001 .

[3]  Dragan Stevanović,et al.  On the Laplacian coefficients of unicyclic graphs , 2009 .

[4]  Douglas J. Klein,et al.  Molecular cyclicity and centricity of polycyclic graphs. I. Cyclicity based on resistance distances or reciprocal distances , 1994 .

[5]  Ernesto Estrada Spectral theory of networks : from biomolecular to ecological systems , 2009 .

[6]  R. Merris Laplacian matrices of graphs: a survey , 1994 .

[7]  Bojan Mohar,et al.  The Quasi-Wiener and the Kirchhoff Indices Coincide , 1996, J. Chem. Inf. Comput. Sci..

[8]  Ernesto Estrada,et al.  Topological atomic displacements, Kirchhoff and Wiener indices of molecules , 2009, 0912.2628.

[9]  Bo Zhou,et al.  The Laplacian-energy Like Invariant is an Energy Like Invariant , 2010 .

[10]  I. Gutman,et al.  Resistance distance and Laplacian spectrum , 2003 .

[11]  Xing Gao,et al.  Resistance distances and the Kirchhoff index in Cayley graphs , 2011, Discret. Appl. Math..

[12]  Shuchao Li,et al.  Ordering of trees with fixed matching number by the Laplacian coefficients , 2011 .

[13]  Heping Zhang,et al.  Kirchhoff index of composite graphs , 2009, Discret. Appl. Math..

[14]  R. Grone,et al.  Algebraic connectivity of trees , 1987 .

[15]  Aleksandar Ilic,et al.  Laplacian coefficients of trees with given number of leaves or vertices of degree two , 2009 .

[16]  Aleksandar Ilic,et al.  ON LAPLACIAN LIKE ENERGY OF TREES , 2011, 1103.4814.

[17]  José Luis Palacios Foster's Formulas via Probability and the Kirchhoff Index , 2004 .

[18]  Heping Zhang,et al.  Resistance distance and Kirchhoff index in circulant graphs , 2007 .

[19]  Xiao-Dong Zhang,et al.  Ordering trees by the Laplacian coefficients , 2009 .

[20]  Bao-Xuan Zhu The Laplacian-energy like of graphs , 2011, Appl. Math. Lett..

[21]  Dariush Kiani,et al.  On incidence energy of a graph , 2009 .

[22]  Yujun Yang,et al.  Unicyclic graphs with extremal Kirchhoff index , 2008 .

[23]  D. Cvetkovic,et al.  Spectra of Graphs: Theory and Applications , 1997 .

[24]  Douglas J. Klein,et al.  Resistance-Distance Sum Rules* , 2002 .

[25]  Aleksandar Ilic,et al.  Trees with minimal Laplacian coefficients , 2010, Comput. Math. Appl..

[26]  Bolian Liu,et al.  A Laplacian-energy-like invariant of a graph , 2008 .

[27]  Bo Zhou,et al.  A note on Kirchhoff index , 2008 .

[28]  István Lukovits,et al.  Extensions of the Wiener Number , 1996, J. Chem. Inf. Comput. Sci..

[29]  M. Fiedler Algebraic connectivity of graphs , 1973 .

[30]  Hai-Ying Shan,et al.  On the Laplacian coefficients of bicyclic graphs , 2010, Discret. Math..

[31]  I. Gutman,et al.  Laplacian energy of a graph , 2006 .

[32]  I. Gutman The Energy of a Graph: Old and New Results , 2001 .

[33]  Frank Harary,et al.  Distance in graphs , 1990 .

[34]  Bolian Liu,et al.  A Survey on the Laplacian-Energy-Like Invariant ∗ , 2011 .