Argumentwise invariant kernels for the approximation of invariant functions

Modeling a deterministic function using gaussian processes and Kriging relies on the selection of an adapted covariance kernel. Similarly, the use of approximation methods from the theory of reproducing kernel Hilbert spaces bases on the choice of a positive definite kernel. When some prior information is available concerning symmetries or arbitrary algebraic invariances of the function to be approximated, it is clearly unreasonable not trying to use it at the stage of kernel selection. We propose a characterization of kernels which associated square-integrable processes have their paths invariant under the action of a finite group. We then give examples of such pathwise invariant processes, built on the basis of stationary and unstationary gaussian processes. The approximation of a function from the structural reliability literature, invariant under the action of a group of order 4, finally allows comparing several Kriging approaches, with different symmetrized kernels. The obtained results confirm the practical interest of the proposed method, at the same time in terms of improved prediction and of conditional simulations respecting prescribed invariances.

[1]  I. J. Schoenberg,et al.  Metric spaces and positive definite functions , 1938 .

[2]  R. Tennant Algebra , 1941, Nature.

[3]  H. Cartan,et al.  Théorie de la dualité et analyse harmonique dans les groupes abéliens localement compacts , 1947 .

[4]  P. Levy Processus stochastiques et mouvement brownien , 1948 .

[5]  D. Krige A statistical approach to some basic mine valuation problems on the Witwatersrand, by D.G. Krige, published in the Journal, December 1951 : introduction by the author , 1951 .

[6]  Malcolm R Leadbetter,et al.  Stationary and Related Stochastic Processes: Sample Function Properties and Their Applications , 1967 .

[7]  K. Parthasarathy,et al.  Positive Definite Kernels, Continuous Tensor Products, and Central Limit Theorems of Probability Theory , 1972 .

[8]  Srishti D. Chatterji,et al.  Positive Definite Kernels , 1983 .

[9]  C. Berg,et al.  Harmonic Analysis on Semigroups , 1984 .

[10]  M. L. Eaton Group invariance applications in statistics , 1989 .

[11]  G. Wahba Spline models for observational data , 1990 .

[12]  M. Yor,et al.  Continuous martingales and Brownian motion , 1990 .

[13]  Che-Chen Liou,et al.  Structural reliability using finite element method , 1992 .

[14]  P. Guttorp,et al.  Nonparametric Estimation of Nonstationary Spatial Covariance Structure , 1992 .

[15]  Robert Haining,et al.  Statistics for spatial data: by Noel Cressie, 1991, John Wiley & Sons, New York, 900 p., ISBN 0-471-84336-9, US $89.95 , 1993 .

[16]  Vladimir Vapnik,et al.  Statistical learning theory , 1998 .

[17]  Donald R. Jones,et al.  Efficient Global Optimization of Expensive Black-Box Functions , 1998, J. Glob. Optim..

[18]  Bernhard Schölkopf,et al.  The Kernel Trick for Distances , 2000, NIPS.

[19]  Roger Woodard,et al.  Interpolation of Spatial Data: Some Theory for Kriging , 1999, Technometrics.

[20]  Marc G. Genton,et al.  Classes of Kernels for Machine Learning: A Statistics Perspective , 2002, J. Mach. Learn. Res..

[21]  Christopher J. Paciorek,et al.  Nonstationary Gaussian Processes for Regression and Spatial Modelling , 2003 .

[22]  Mark J. Schervish,et al.  Nonstationary Covariance Functions for Gaussian Process Regression , 2003, NIPS.

[23]  Eric R. Ziegel,et al.  The Elements of Statistical Learning , 2003, Technometrics.

[24]  A. O'Hagan,et al.  Bayesian inference for non‐stationary spatial covariance structure via spatial deformations , 2003 .

[25]  A. Berlinet,et al.  Reproducing kernel Hilbert spaces in probability and statistics , 2004 .

[26]  Emmanuel Vazquez,et al.  Modélisation comportementale de systèmes non-linéaires multivariables par méthodes à noyaux et applications , 2005 .

[27]  Frank C. Curriero ON THE USE OF NON-EUCLIDEAN ISOTROPY IN GEOSTATISTICS , 2005 .

[28]  L. Schueremans,et al.  Benefit of splines and neural networks in simulation based structural reliability analysis , 2005 .

[29]  D. T. Hristopulos Spatial random field models inspired from statistical physics with applications in the geosciences , 2006 .

[30]  A. OHagan,et al.  Bayesian analysis of computer code outputs: A tutorial , 2006, Reliab. Eng. Syst. Saf..

[31]  Wei Chen,et al.  A non‐stationary covariance‐based Kriging method for metamodelling in engineering design , 2007 .

[32]  Robert B. Gramacy,et al.  Ja n 20 08 Bayesian Treed Gaussian Process Models with an Application to Computer Modeling , 2009 .

[33]  M. Sewell,et al.  Kernel Methods , 2017, Encyclopedia of Machine Learning and Data Mining.

[34]  R. Adler,et al.  Random Fields and Geometry , 2007 .

[35]  Modélisation et statistique spatiales , 2008 .

[36]  M. Stein,et al.  Estimating deformations of isotropic Gaussian random fields on the plane , 2008, 0804.0723.

[37]  Alain Valette,et al.  Kazhdan's Property (T): KAZHDAN'S PROPERTY (T) , 2008 .

[38]  Carl E. Rasmussen,et al.  Gaussian processes for machine learning , 2005, Adaptive computation and machine learning.

[39]  S. Chatterjee,et al.  Consistent estimates of deformed isotropic Gaussian random fields on the plane , 2007, 0710.0379.

[40]  Sonja Kuhnt,et al.  Design and analysis of computer experiments , 2010 .

[41]  Ling Li,et al.  Sequential design of computer experiments for the estimation of a probability of failure , 2010, Statistics and Computing.

[42]  J. Istas Manifold indexed fractional fields , 2012 .