Inverted Perovskite Solar Cells: Progresses and Perspectives

During the past 6 years, perovskite solar cells have experienced a rapid development and shown great potential as the next‐generation photovoltaics. For the perovskite solar cells with regular structure (n‐i‐p structure), device efficiency has reached over 20% after the intense efforts of researchers from all over the world. Recently, perovskite solar cells with the inverted structure (p‐i‐n structure) have been becoming more and more attractive, owing to their easy‐fabrication, cost‐effectiveness, and suppressed hysteresis characteristics. Some recent progress in their device performance and stability has indicated their promising future. Here, recent developments and future perspectives about inverted perovskite solar cells are reviewed. Interface engineering, film morphology control, device stability, hysteresis phenomena and other research hotspots are discussed to present the roadmap for the development of inverted perovskite solar cells.

[1]  Tianyu Meng,et al.  Efficient Perovskite Hybrid Solar Cells by Highly Electrical Conductive PEDOT:PSS Hole Transport Layer , 2016 .

[2]  C. Chang,et al.  Enhanced Performance and Stability of Semitransparent Perovskite Solar Cells Using Solution-Processed Thiol-Functionalized Cationic Surfactant as Cathode Buffer Layer , 2015 .

[3]  Sandeep Kumar Pathak,et al.  Lead-free organic–inorganic tin halide perovskites for photovoltaic applications , 2014 .

[4]  Dong Wang,et al.  Growth control of compact CH3NH3PbI3 thin films via enhanced solid-state precursor reaction for efficient planar perovskite solar cells , 2015 .

[5]  Meng Li,et al.  Planar perovskite solar cells with 15.75% power conversion efficiency by cathode and anode interfacial modification , 2015 .

[6]  M. Johnston,et al.  Formamidinium lead trihalide: a broadly tunable perovskite for efficient planar heterojunction solar cells , 2014 .

[7]  Henk J. Bolink,et al.  Flexible high efficiency perovskite solar cells , 2014 .

[8]  Chunhui Huang,et al.  Hole-conductor-free planar perovskite solar cells with 16.0% efficiency , 2015 .

[9]  Fujun Zhang,et al.  Dynamic interface charge governing the current-voltage hysteresis in perovskite solar cells. , 2015, Physical chemistry chemical physics : PCCP.

[10]  Jun Mei,et al.  Improved Crystallization of Perovskite Films by Optimized Solvent Annealing for High Efficiency Solar Cell. , 2015, ACS applied materials & interfaces.

[11]  Yongfang Li,et al.  Room-temperature mixed-solvent-vapor annealing for high performance perovskite solar cells , 2016 .

[12]  Mercouri G Kanatzidis,et al.  Semiconducting tin and lead iodide perovskites with organic cations: phase transitions, high mobilities, and near-infrared photoluminescent properties. , 2013, Inorganic chemistry.

[13]  Franco Cacialli,et al.  Inorganic caesium lead iodide perovskite solar cells , 2015 .

[14]  Qi Chen,et al.  Controllable self-induced passivation of hybrid lead iodide perovskites toward high performance solar cells. , 2014, Nano letters.

[15]  Namchul Cho,et al.  Enhanced Environmental Stability of Planar Heterojunction Perovskite Solar Cells Based on Blade‐Coating , 2015 .

[16]  Peng Gao,et al.  Effect of Annealing Temperature on Film Morphology of Organic–Inorganic Hybrid Pervoskite Solid‐State Solar Cells , 2014 .

[17]  Heng Ma,et al.  Interface engineering toward enhanced efficiency of planar perovskite solar cells , 2016 .

[18]  Zhuang Liu,et al.  Efficient planar heterojunction perovskite solar cells employing graphene oxide as hole conductor. , 2014, Nanoscale.

[19]  Tao Song,et al.  High-performance planar heterojunction perovskite solar cells: Preserving long charge carrier diffusion lengths and interfacial engineering , 2014, Nano Research.

[20]  Andrew C. Grimsdale,et al.  Perovskite-based solar cells: impact of morphology and device architecture on device performance , 2015 .

[21]  Chunhui Huang,et al.  High-performance hybrid perovskite solar cells with polythiophene as hole-transporting layer via electrochemical polymerization , 2014 .

[22]  Nakita K. Noel,et al.  Anomalous Hysteresis in Perovskite Solar Cells. , 2014, The journal of physical chemistry letters.

[23]  Jinsong Huang,et al.  Electric‐Field‐Driven Reversible Conversion Between Methylammonium Lead Triiodide Perovskites and Lead Iodide at Elevated Temperatures , 2016 .

[24]  K. Wong,et al.  A Smooth CH3NH3PbI3 Film via a New Approach for Forming the PbI2 Nanostructure Together with Strategically High CH3NH3I Concentration for High Efficient Planar‐Heterojunction Solar Cells , 2015 .

[25]  Chin‐Ti Chen,et al.  A solution-processed n-doped fullerene cathode interfacial layer for efficient and stable large-area perovskite solar cells , 2016 .

[26]  Lei Meng,et al.  Recent Advances in the Inverted Planar Structure of Perovskite Solar Cells. , 2016, Accounts of chemical research.

[27]  Meng Li,et al.  Controllable Perovskite Crystallization by Water Additive for High‐Performance Solar Cells , 2015 .

[28]  Henry J Snaith,et al.  Efficient organometal trihalide perovskite planar-heterojunction solar cells on flexible polymer substrates , 2013, Nature Communications.

[29]  L. Liao,et al.  A solution-processed bathocuproine cathode interfacial layer for high-performance bromine-iodine perovskite solar cells. , 2015, Physical chemistry chemical physics : PCCP.

[30]  Xiao-Fang Jiang,et al.  Improving Film Formation and Photovoltage of Highly Efficient Inverted‐Type Perovskite Solar Cells through the Incorporation of New Polymeric Hole Selective Layers , 2016 .

[31]  Shangfeng Yang,et al.  Efficiency Enhancement of Inverted Structure Perovskite Solar Cells via Oleamide Doping of PCBM Electron Transport Layer. , 2015, ACS applied materials & interfaces.

[32]  Chunhui Huang,et al.  High‐Performance Planar Solar Cells Based On CH3NH3PbI3‐xClx Perovskites with Determined Chlorine Mole Fraction , 2015 .

[33]  Weiwei Wang,et al.  Inverted planar heterojunction perovskite solar cells employing polymer as the electron conductor. , 2015, ACS applied materials & interfaces.

[34]  Chiara Bertarelli,et al.  17.6% stabilized efficiency in low-temperature processed planar perovskite solar cells , 2015 .

[35]  L. Liao,et al.  Inverted planar NH2CH=NH2PbI3 perovskite solar cells with 13.56% efficiency via low temperature processing. , 2015, Physical chemistry chemical physics : PCCP.

[36]  Yongbo Yuan,et al.  Correlation of energy disorder and open-circuit voltage in hybrid perovskite solar cells , 2016, Nature Energy.

[37]  Rui Zhu,et al.  Engineering of electron-selective contact for perovskite solar cells with efficiency exceeding 15%. , 2014, ACS nano.

[38]  Henry J. Snaith,et al.  Enhanced UV-light stability of planar heterojunction perovskite solar cells with caesium bromide interface modification , 2016 .

[39]  Sung Cheol Yoon,et al.  Efficient CH3NH3PbI3 Perovskite Solar Cells Employing Nanostructured p‐Type NiO Electrode Formed by a Pulsed Laser Deposition , 2015, Advanced materials.

[40]  Xizhe Liu,et al.  Spray reaction prepared FA1−xCsxPbI3 solid solution as a light harvester for perovskite solar cells with improved humidity stability , 2016 .

[41]  K. Wong,et al.  Vacuum-assisted thermal annealing of CH3NH3PbI3 for highly stable and efficient perovskite solar cells. , 2015, ACS nano.

[42]  Q. Gong,et al.  Mesoporous PbI2 Scaffold for High‐Performance Planar Heterojunction Perovskite Solar Cells , 2016 .

[43]  J. Berry,et al.  Stabilizing Perovskite Structures by Tuning Tolerance Factor: Formation of Formamidinium and Cesium Lead Iodide Solid-State Alloys , 2016 .

[44]  M. Nazeeruddin,et al.  Metal‐Oxide‐Free Methylammonium Lead Iodide Perovskite‐Based Solar Cells: the Influence of Organic Charge Transport Layers , 2014 .

[45]  T. Ma,et al.  CH3NH3SnxPb(1-x)I3 Perovskite Solar Cells Covering up to 1060 nm. , 2014, The journal of physical chemistry letters.

[46]  Wenjun Zhang,et al.  Highly efficient electron transport obtained by doping PCBM with graphdiyne in planar-heterojunction perovskite solar cells. , 2015, Nano letters.

[47]  Paul L. Burn,et al.  Electro-optics of perovskite solar cells , 2014, Nature Photonics.

[48]  Sung Cheol Yoon,et al.  Benefits of very thin PCBM and LiF layers for solution-processed p–i–n perovskite solar cells , 2014 .

[49]  Xiang Fang,et al.  Improvement of the humidity stability of organic–inorganic perovskite solar cells using ultrathin Al2O3 layers prepared by atomic layer deposition , 2015 .

[50]  Young Chan Kim,et al.  Compositional engineering of perovskite materials for high-performance solar cells , 2015, Nature.

[51]  K. Wong,et al.  A PCBM Electron Transport Layer Containing Small Amounts of Dual Polymer Additives that Enables Enhanced Perovskite Solar Cell Performance , 2015, Advanced science.

[52]  Tzung-Fang Guo,et al.  CH3NH3PbI3 Perovskite/Fullerene Planar‐Heterojunction Hybrid Solar Cells , 2013, Advanced materials.

[53]  Z. Yin,et al.  Highly efficient and stable planar heterojunction perovskite solar cells via a low temperature solution process , 2015 .

[54]  Kun Zhang,et al.  Retarding the crystallization of PbI2 for highly reproducible planar-structured perovskite solar cells via sequential deposition , 2014 .

[55]  Jin Young Kim,et al.  Conjugated polyelectrolyte hole transport layer for inverted-type perovskite solar cells , 2015, Nature Communications.

[56]  Bei Chu,et al.  Efficient and stable planar heterojunction perovskite solar cells with an MoO3/PEDOT:PSS hole transporting layer. , 2015, Nanoscale.

[57]  Jie Zheng,et al.  Bulk heterojunction perovskite hybrid solar cells with large fill factor , 2015 .

[58]  J. Noh,et al.  Chemical management for colorful, efficient, and stable inorganic-organic hybrid nanostructured solar cells. , 2013, Nano letters.

[59]  Jun-Seok Yeo,et al.  Planar heterojunction perovskite solar cells with superior reproducibility , 2014, Scientific Reports.

[60]  Jinsong Huang,et al.  Low‐Temperature Fabrication of Efficient Wide‐Bandgap Organolead Trihalide Perovskite Solar Cells , 2015 .

[61]  Jinsong Huang,et al.  Solvent Annealing of Perovskite‐Induced Crystal Growth for Photovoltaic‐Device Efficiency Enhancement , 2014, Advanced materials.

[62]  Jinsong Huang,et al.  Scalable fabrication of efficient organolead trihalide perovskite solar cells with doctor-bladed active layers , 2015 .

[63]  Sandeep Kumar Pathak,et al.  Ultrasmooth organic–inorganic perovskite thin-film formation and crystallization for efficient planar heterojunction solar cells , 2015, Nature Communications.

[64]  Q. Gong,et al.  Fast-growing procedure for perovskite films in planar heterojunction perovskite solar cells , 2015 .

[65]  Sergei Tretiak,et al.  High-efficiency solution-processed perovskite solar cells with millimeter-scale grains , 2015, Science.

[66]  Qingfeng Dong,et al.  Giant switchable photovoltaic effect in organometal trihalide perovskite devices. , 2015, Nature materials.

[67]  Henk J. Bolink,et al.  Efficient methylammonium lead iodide perovskite solar cells with active layers from 300 to 900 nm , 2014 .

[68]  Henry J. Snaith,et al.  Stability of Metal Halide Perovskite Solar Cells , 2015 .

[69]  Tae‐Woo Lee,et al.  Boosting the Power Conversion Efficiency of Perovskite Solar Cells Using Self‐Organized Polymeric Hole Extraction Layers with High Work Function , 2014, Advanced materials.

[70]  Qi Chen,et al.  Improved air stability of perovskite solar cells via solution-processed metal oxide transport layers. , 2016, Nature nanotechnology.

[71]  N. Park,et al.  Lead Iodide Perovskite Sensitized All-Solid-State Submicron Thin Film Mesoscopic Solar Cell with Efficiency Exceeding 9% , 2012, Scientific Reports.

[72]  Yaming Yu,et al.  NH2CH═NH2PbI3: An Alternative Organolead Iodide Perovskite Sensitizer for Mesoscopic Solar Cells , 2014 .

[73]  Ming-Hsien Li,et al.  Low-temperature sputtered nickel oxide compact thin film as effective electron blocking layer for mesoscopic NiO/CH3NH3PbI3 perovskite heterojunction solar cells. , 2014, ACS applied materials & interfaces.

[74]  Jianyong Ouyang,et al.  Transparent conductive oxide-free perovskite solar cells with PEDOT:PSS as transparent electrode. , 2015, ACS applied materials & interfaces.

[75]  Namchul Cho,et al.  High‐Performance and Environmentally Stable Planar Heterojunction Perovskite Solar Cells Based on a Solution‐Processed Copper‐Doped Nickel Oxide Hole‐Transporting Layer , 2015, Advanced materials.

[76]  Yongbo Yuan,et al.  Origin and elimination of photocurrent hysteresis by fullerene passivation in CH3NH3PbI3 planar heterojunction solar cells , 2014, Nature Communications.

[77]  Alex K.-Y. Jen,et al.  Low-temperature processed high-performance flexible perovskite solar cells via rationally optimized solvent washing treatments , 2014 .

[78]  Peng Gao,et al.  Mesoscopic CH3NH3PbI3/TiO2 heterojunction solar cells. , 2012, Journal of the American Chemical Society.

[79]  Yongzhen Wu,et al.  High‐Quality Mixed‐Organic‐Cation Perovskites from a Phase‐Pure Non‐stoichiometric Intermediate (FAI)1−x‐PbI2 for Solar Cells , 2015, Advanced materials.

[80]  Qi Chen,et al.  Low-temperature solution-processed perovskite solar cells with high efficiency and flexibility. , 2014, ACS nano.

[81]  Lingamallu Giribabu,et al.  Recent advances in flexible perovskite solar cells. , 2015, Chemical communications.

[82]  Zong-Liang Tseng,et al.  High efficiency stable inverted perovskite solar cells without current hysteresis , 2015 .

[83]  Yu-Cheng Chang,et al.  p-type Mesoscopic Nickel Oxide/Organometallic Perovskite Heterojunction Solar Cells , 2014, Scientific Reports.

[84]  Henk J. Bolink,et al.  Perovskite solar cells employing organic charge-transport layers , 2013, Nature Photonics.

[85]  Jinsong Huang,et al.  Large fill-factor bilayer iodine perovskite solar cells fabricated by a low-temperature solution-process , 2014 .

[86]  Liming Ding,et al.  An 80.11% FF record achieved for perovskite solar cells by using the NH4Cl additive. , 2014, Nanoscale.

[87]  Yunlong Li,et al.  Stable high-performance hybrid perovskite solar cells with ultrathin polythiophene as hole-transporting layer , 2015, Nano Research.

[88]  A. Jen,et al.  The roles of alkyl halide additives in enhancing perovskite solar cell performance , 2015 .

[89]  Yongbo Yuan,et al.  Non-wetting surface-driven high-aspect-ratio crystalline grain growth for efficient hybrid perovskite solar cells , 2015, Nature Communications.

[90]  Kai Zhu,et al.  Organic-inorganic hybrid lead halide perovskites for optoelectronic and electronic applications. , 2016, Chemical Society reviews.

[91]  Jiang Liu,et al.  Highly efficient fullerene/perovskite planar heterojunction solar cells via cathode modification with an amino-functionalized polymer interlayer , 2014 .

[92]  L. Liao,et al.  Improved hole interfacial layer for planar perovskite solar cells with efficiency exceeding 15%. , 2015, ACS applied materials & interfaces.

[93]  Karen Forberich,et al.  High-performance semitransparent perovskite solar cells with solution-processed silver nanowires as top electrodes. , 2015, Nanoscale.

[94]  S. Pang,et al.  Microstructures of Organometal Trihalide Perovskites for Solar Cells: Their Evolution from Solutions and Characterization. , 2015, The journal of physical chemistry letters.

[95]  Qingfeng Dong,et al.  Efficient, high yield perovskite photovoltaic devices grown by interdiffusion of solution-processed precursor stacking layers , 2014 .

[96]  Junjie Si,et al.  Hot‐Electron Injection in a Sandwiched TiOx–Au–TiOx Structure for High‐Performance Planar Perovskite Solar Cells , 2015 .

[97]  Gang Li,et al.  Visibly transparent polymer solar cells produced by solution processing. , 2012, ACS nano.

[98]  Fan Zuo,et al.  Binary‐Metal Perovskites Toward High‐Performance Planar‐Heterojunction Hybrid Solar Cells , 2014, Advanced materials.

[99]  C. Brabec,et al.  Improved High-Efficiency Perovskite Planar Heterojunction Solar Cells via Incorporation of a Polyelectrolyte Interlayer , 2014 .

[100]  Luis Camacho,et al.  High efficiency single-junction semitransparent perovskite solar cells , 2014 .

[101]  F. So,et al.  High‐Efficiency Solution‐Processed Planar Perovskite Solar Cells with a Polymer Hole Transport Layer , 2015 .

[102]  Gary Hodes,et al.  Inorganic Hole Conducting Layers for Perovskite-Based Solar Cells. , 2014, The journal of physical chemistry letters.

[103]  Sai-Wing Tsang,et al.  Chlorine Incorporation for Enhanced Performance of Planar Perovskite Solar Cell Based on Lead Acetate Precursor. , 2015, ACS applied materials & interfaces.

[104]  Robert P. H. Chang,et al.  Lead-free solid-state organic–inorganic halide perovskite solar cells , 2014, Nature Photonics.

[105]  M. Grätzel,et al.  Sequential deposition as a route to high-performance perovskite-sensitized solar cells , 2013, Nature.

[106]  C. Chang,et al.  High-Performance, Air-Stable, Low-Temperature Processed Semitransparent Perovskite Solar Cells Enabled by Atomic Layer Deposition , 2015 .

[107]  Dongmei Li,et al.  Interfaces in perovskite solar cells. , 2015, Small.

[108]  Tae Kyu Ahn,et al.  Hysteresis-less inverted CH3NH3PbI3 planar perovskite hybrid solar cells with 18.1% power conversion efficiency , 2015 .

[109]  Hongkyu Kang,et al.  Interfacial modification of hole transport layers for efficient large-area perovskite solar cells achieved via blade-coating , 2016 .

[110]  Yang Yang,et al.  Moisture assisted perovskite film growth for high performance solar cells , 2014 .

[111]  Sang Il Seok,et al.  High-performance photovoltaic perovskite layers fabricated through intramolecular exchange , 2015, Science.

[112]  Henry J. Snaith,et al.  The renaissance of dye-sensitized solar cells , 2012, Nature Photonics.

[113]  Reinhard Schwödiauer,et al.  Flexible high power-per-weight perovskite solar cells with chromium oxide-metal contacts for improved stability in air. , 2015, Nature Materials.

[114]  M. Grätzel,et al.  Title: Long-Range Balanced Electron and Hole Transport Lengths in Organic-Inorganic CH3NH3PbI3 , 2017 .

[115]  Liming Ding,et al.  Solution-Processed Cu2O and CuO as Hole Transport Materials for Efficient Perovskite Solar Cells. , 2015, Small.

[116]  F. Huang,et al.  Metallohalide perovskite–polymer composite film for hybrid planar heterojunction solar cells , 2015 .

[117]  Sang Il Seok,et al.  Solvent engineering for high-performance inorganic-organic hybrid perovskite solar cells. , 2014, Nature materials.

[118]  Shihe Yang,et al.  High performance inverted structure perovskite solar cells based on a PCBM:polystyrene blend electron transport layer , 2015 .

[119]  K. Sun,et al.  Effects of organic inorganic hybrid perovskite materials on the electronic properties and morphology of poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) and the photovoltaic performance of planar perovskite solar cells , 2015 .

[120]  Yang Yang,et al.  A Robust Inter‐Connecting Layer for Achieving High Performance Tandem Polymer Solar Cells , 2011, Advanced materials.

[121]  Jinsong Huang,et al.  Abnormal crystal growth in CH3NH3PbI3−xClx using a multi-cycle solution coating process , 2015 .

[122]  Jin Young Kim,et al.  Cesium-doped methylammonium lead iodide perovskite light absorber for hybrid solar cells , 2014 .

[123]  Fan Zuo,et al.  Additive Enhanced Crystallization of Solution‐Processed Perovskite for Highly Efficient Planar‐Heterojunction Solar Cells , 2014, Advanced materials.

[124]  Yang Yang,et al.  High-efficiency robust perovskite solar cells on ultrathin flexible substrates , 2016, Nature Communications.

[125]  Oleksandr Voznyy,et al.  Perovskite–fullerene hybrid materials suppress hysteresis in planar diodes , 2015, Nature Communications.

[126]  J. Teuscher,et al.  Efficient Hybrid Solar Cells Based on Meso-Superstructured Organometal Halide Perovskites , 2012, Science.

[127]  Henk J. Bolink,et al.  Lead acetate precursor based p-i-n perovskite solar cells with enhanced reproducibility and low hysteresis , 2015 .

[128]  Wei Chen,et al.  Efficient and stable large-area perovskite solar cells with inorganic charge extraction layers , 2015, Science.

[129]  Yunlong Li,et al.  CuSCN-Based Inverted Planar Perovskite Solar Cell with an Average PCE of 15.6%. , 2015, Nano letters.

[130]  Sung Min Cho,et al.  Formamidinium and Cesium Hybridization for Photo‐ and Moisture‐Stable Perovskite Solar Cell , 2015 .

[131]  Chun-Guey Wu,et al.  Planar heterojunction perovskite/PC71BM solar cells with enhanced open-circuit voltage via a (2/1)-step spin-coating process , 2014 .

[132]  Timothy L. Kelly,et al.  Origin of the Thermal Instability in CH3NH3PbI3 Thin Films Deposited on ZnO , 2015 .

[133]  Yun-Chorng Chang,et al.  Nickel Oxide Electrode Interlayer in CH3NH3PbI3 Perovskite/PCBM Planar‐Heterojunction Hybrid Solar Cells , 2014, Advanced materials.

[134]  Mingkui Wang,et al.  Amino‐Functionalized Conjugated Polymer as an Efficient Electron Transport Layer for High‐Performance Planar‐Heterojunction Perovskite Solar Cells , 2016 .

[135]  M. Green,et al.  The emergence of perovskite solar cells , 2014, Nature Photonics.

[136]  M. Grätzel,et al.  Perovskite Photovoltaics with Outstanding Performance Produced by Chemical Conversion of Bilayer Mesostructured Lead Halide/TiO2 Films , 2016, Advanced materials.

[137]  Chin‐Ti Chen,et al.  Room-Temperature Solution-Processed n-Doped Zirconium Oxide Cathode Buffer Layer for Efficient and Stable Organic and Hybrid Perovskite Solar Cells , 2016 .

[138]  Jiang Tang,et al.  PbS colloidal quantum dots as an effective hole transporter for planar heterojunction perovskite solar cells , 2015 .

[139]  Yaoguang Rong,et al.  Beyond Efficiency: the Challenge of Stability in Mesoscopic Perovskite Solar Cells , 2015 .

[140]  M. Grätzel,et al.  A hole-conductor–free, fully printable mesoscopic perovskite solar cell with high stability , 2014, Science.

[141]  Laura M. Herz,et al.  Electron-Hole Diffusion Lengths Exceeding 1 Micrometer in an Organometal Trihalide Perovskite Absorber , 2013, Science.

[142]  Nam-Gyu Park,et al.  6.5% efficient perovskite quantum-dot-sensitized solar cell. , 2011, Nanoscale.

[143]  M. Li,et al.  A room-temperature CuAlO2 hole interfacial layer for efficient and stable planar perovskite solar cells , 2016 .

[144]  Nripan Mathews,et al.  The origin of high efficiency in low-temperature solution-processable bilayer organometal halide hybrid solar cells , 2014 .

[145]  Tsutomu Miyasaka,et al.  Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. , 2009, Journal of the American Chemical Society.