Polarization-independent metasurface lens employing the Pancharatnam-Berry phase.

Metasurface optical elements, optical phased arrays constructed from a dense arrangement of nanoscale antennas, are promising candidates for the next generation of flat optical components. Metasurfaces that rely on the Pancharatnam-Berry phase facilitate complete and efficient wavefront control. However, their operation typically requires control over the polarization state of the incident light to achieve a desired optical function. Here, we circumvent this inherent sensitivity to the incident polarization by multiplexing two metasurfaces that were designed to achieve the same optical function with incident light of opposite helicity. We analyze the optical performance of different multiplexing approaches, and demonstrate a subwavelength random interleaved polarization-independent metasurface lens operating in the visible spectrum, providing a diffraction-limited spot size for the shared-aperture.

[1]  Erez Hasman,et al.  Photonic spin-controlled multifunctional shared-aperture antenna array , 2016, Science.

[2]  Marco Fiorentino,et al.  Sub-Wavelength Grating Lenses With a Twist , 2014, IEEE Photonics Technology Letters.

[3]  Erez Hasman,et al.  Photonic spin-controlled multifunctional shared-aperture antenna array , 2016, Science.

[4]  Qun Wu,et al.  Phase-engineered metalenses to generate converging and non-diffractive vortex beam carrying orbital angular momentum in microwave region. , 2018, Optics express.

[5]  Gordon Wetzstein,et al.  Photonic Multitasking Interleaved Si Nanoantenna Phased Array. , 2016, Nano letters.

[6]  Sergey I. Bozhevolnyi,et al.  Plasmonic metagratings for simultaneous determination of Stokes parameters , 2015, 1609.04691.

[7]  E Hasman,et al.  Pancharatnam--Berry phase in space-variant polarization-state manipulations with subwavelength gratings. , 2001, Optics letters.

[8]  Vladimir M. Shalaev,et al.  Metasurface holograms for visible light , 2013, Nature Communications.

[9]  Polarization-independent and high-efficiency dielectric metasurfaces for visible light. , 2015, Optics express.

[10]  W. T. Chen,et al.  Metalenses at visible wavelengths: Diffraction-limited focusing and subwavelength resolution imaging , 2016, Science.

[11]  Philippe Lalanne,et al.  Metalenses at visible wavelengths: past, present, perspectives , 2016 .

[12]  Erez Hasman,et al.  Multifunctional interleaved geometric-phase dielectric metasurfaces , 2017, Light: Science & Applications.

[13]  Pengyu Fan,et al.  Tuning the color of silicon nanostructures. , 2010, Nano letters.

[14]  A.M. Sayeed,et al.  Maximizing MIMO Capacity in Sparse Multipath With Reconfigurable Antenna Arrays , 2007, IEEE Journal of Selected Topics in Signal Processing.

[15]  B. Luk’yanchuk,et al.  Optically resonant dielectric nanostructures , 2016, Science.

[16]  S. Pancharatnam,et al.  Generalized theory of interference, and its applications , 1956 .

[17]  Seyedeh Mahsa Kamali,et al.  Multiwavelength polarization insensitive lenses based on dielectric metasurfaces with meta-molecules , 2016, 1601.05847.

[18]  Qiaofeng Tan,et al.  Dual-polarity plasmonic metalens for visible light , 2012, Nature Communications.

[19]  Andrey E. Miroshnichenko,et al.  Magnetic light , 2012, Scientific reports.

[20]  Y. Wang,et al.  Photonic Spin Hall Effect at Metasurfaces , 2013, Science.

[21]  A. Kildishev,et al.  Planar Photonics with Metasurfaces , 2013, Science.

[22]  Philippe Lalanne,et al.  Design and fabrication of blazed binary diffractive elements with sampling periods smaller than the structural cutoff , 1999 .

[23]  Sergey I. Bozhevolnyi,et al.  Gap plasmon-based metasurfaces for total control of reflected light , 2013, Scientific Reports.

[24]  G. Biener,et al.  Space-variant polarization manipulation for far-field polarimetry by use of subwavelength dielectric gratings. , 2005, Optics letters.

[25]  P. Chavel,et al.  Blazed binary subwavelength gratings with efficiencies larger than those of conventional échelette gratings. , 1998, Optics letters.

[26]  Erez Hasman,et al.  Polarization dependent focusing lens by use of quantized Pancharatnam–Berry phase diffractive optics , 2003 .

[27]  A. Arbabi,et al.  Subwavelength-thick lenses with high numerical apertures and large efficiency based on high-contrast transmitarrays , 2014, Nature Communications.

[28]  Erez Hasman,et al.  Optical spin Hall effects in plasmonic chains. , 2011, Nano letters.

[29]  Boris N. Chichkov,et al.  Optical response features of Si-nanoparticle arrays , 2010 .

[30]  M. Berry Quantal phase factors accompanying adiabatic changes , 1984, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[31]  Ye Feng Yu,et al.  High‐transmission dielectric metasurface with 2π phase control at visible wavelengths , 2015 .

[32]  Jingbo Sun,et al.  High-Efficiency All-Dielectric Metasurfaces for Ultracompact Beam Manipulation in Transmission Mode. , 2015, Nano letters.

[33]  David M. Pozar,et al.  A shared-aperture dual-band dual-polarized microstrip array , 2001 .

[34]  N. Yu,et al.  Light Propagation with Phase Discontinuities: Generalized Laws of Reflection and Refraction , 2011, Science.

[35]  J. Aizpurua,et al.  Strong magnetic response of submicron silicon particles in the infrared. , 2010, Optics express.

[36]  Federico Capasso,et al.  Ultracompact metasurface in-line polarimeter , 2016 .

[37]  Erez Hasman,et al.  Dielectric gradient metasurface optical elements , 2014, Science.

[38]  E. Hasman,et al.  Spin-Optical Metamaterial Route to Spin-Controlled Photonics , 2013, Science.

[39]  F. Capasso,et al.  Multispectral Chiral Imaging with a Metalens. , 2016, Nano letters.

[40]  Wei Ting Chen,et al.  Polarization-Insensitive Metalenses at Visible Wavelengths. , 2016, Nano letters.

[41]  E. Hasman,et al.  Geometric doppler effect: spin-split dispersion of thermal radiation. , 2010, Physical review letters.

[42]  A A Friesem,et al.  Efficient multilevel phase holograms for CO(2) lasers. , 1991, Optics letters.

[43]  Dennis W. Prather,et al.  Interleaved diffractive optical element design , 2001, SPIE Optics + Photonics.

[44]  Linyou Cao,et al.  Engineering light absorption in semiconductor nanowire devices. , 2009, Nature materials.

[45]  Zhen Peng,et al.  Flat dielectric grating reflectors with focusing abilities , 2010, 1001.3711.

[46]  Erez Hasman,et al.  Space-variant Pancharatnam-Berry phase optical elements with computer-generated subwavelength gratings. , 2002, Optics letters.

[47]  R. Haupt,et al.  Interleaved thinned linear arrays , 2005, IEEE Transactions on Antennas and Propagation.