TRIOPT: a triangulation-based partitioning algorithm for global optimization

[1]  Hans-Paul Schwefel,et al.  Numerical Optimization of Computer Models , 1982 .

[2]  Aimo A. Törn,et al.  Global Optimization , 1999, Science.

[3]  S. Pal,et al.  Object-background segmentation using new definitions of entropy , 1989 .

[4]  Franz Aurenhammer,et al.  Voronoi diagrams—a survey of a fundamental geometric data structure , 1991, CSUR.

[5]  Eldon Hansen,et al.  Global optimization using interval analysis , 1992, Pure and applied mathematics.

[6]  János D. Pintér,et al.  Convergence qualification of adaptive partition algorithms in global optimization , 1992, Math. Program..

[7]  Clayton V. Deutsch,et al.  GSLIB: Geostatistical Software Library and User's Guide , 1993 .

[8]  C. D. Perttunen,et al.  Lipschitzian optimization without the Lipschitz constant , 1993 .

[9]  Jonas Mockus,et al.  Application of Bayesian approach to numerical methods of global and stochastic optimization , 1994, J. Glob. Optim..

[10]  P. Pardalos,et al.  Handbook of global optimization , 1995 .

[11]  Robert L. Scot Drysdale,et al.  A comparison of sequential Delaunay triangulation algorithms , 1995, SCG '95.

[12]  János D. Pintér,et al.  Global optimization in action , 1995 .

[13]  Zbigniew Michalewicz,et al.  Genetic Algorithms + Data Structures = Evolution Programs , 1996, Springer Berlin Heidelberg.

[14]  David P. Dobkin,et al.  The quickhull algorithm for convex hulls , 1996, TOMS.

[15]  Thomas Bäck,et al.  Evolutionary algorithms in theory and practice - evolution strategies, evolutionary programming, genetic algorithms , 1996 .

[16]  Clayton V. Deutsch,et al.  Geostatistical Software Library and User's Guide , 1998 .

[17]  P Cignoni,et al.  DeWall: A fast divide and conquer Delaunay triangulation algorithm in Ed , 1998, Comput. Aided Des..

[18]  Aimo A. Törn,et al.  Stochastic Global Optimization: Problem Classes and Solution Techniques , 1999, J. Glob. Optim..

[19]  Arnold Neumaier,et al.  Global Optimization by Multilevel Coordinate Search , 1999, J. Glob. Optim..

[20]  Linet Özdamar,et al.  A note on the use of a fuzzy approach in adaptive partitioning algorithms for global optimization , 1999, IEEE Trans. Fuzzy Syst..

[21]  Linet Özdamar,et al.  Experiments with new stochastic global optimization search techniques , 2000, Comput. Oper. Res..

[22]  Dr.-Ing. Hartmut Pohlheim Genetic and Evolutionary Algorithm Toolbox for Matlab , 2000 .

[23]  Mattias Björkman,et al.  Global Optimization of Costly Nonconvex Functions Using Radial Basis Functions , 2000 .

[24]  Linet Özdamar,et al.  Comparison of partition evaluation measures in an adaptive partitioning algorithm for global optimization , 2001, Fuzzy Sets Syst..

[25]  Esin Onbasçioglu,et al.  Parallel Simulated Annealing Algorithms in Global Optimization , 2001, J. Glob. Optim..

[26]  Donald R. Jones,et al.  A Taxonomy of Global Optimization Methods Based on Response Surfaces , 2001, J. Glob. Optim..

[27]  Hans-Martin Gutmann,et al.  A Radial Basis Function Method for Global Optimization , 2001, J. Glob. Optim..