Lizards and rabbits may increase Chagas infection risk in the Mediterranean-type ecosystem of South America

[1]  D. Gorla,et al.  Spatio-temporal characterization of Trypanosoma cruzi infection and discrete typing units infecting hosts and vectors from non-domestic foci of Chile , 2019, PLoS neglected tropical diseases.

[2]  A. Chui Ecology and Evolution of Infectious Diseases: Pathogen Control and Public Health Management in Low-Income Countries , 2018, The Yale Journal of Biology and Medicine.

[3]  A. Guarneri,et al.  Effect of temperature and vector nutrition on the development and multiplication of Trypanosoma rangeli in Rhodnius prolixus , 2018, Parasitology Research.

[4]  B. Singer,et al.  Addressing vulnerability, building resilience: community-based adaptation to vector-borne diseases in the context of global change , 2017, Infectious Diseases of Poverty.

[5]  A. Bacigalupo,et al.  Feeding profile of Mepraia spinolai, a sylvatic vector of Chagas disease in Chile. , 2016, Acta tropica.

[6]  G. Manrique,et al.  Spatio‐temporal analysis of the role of faecal depositions in aggregation behaviour of the triatomine Rhodnius prolixus , 2016 .

[7]  S. Auld,et al.  Epidemiological Implications of Host Biodiversity and Vector Biology: Key Insights from Simple Models , 2016, The American Naturalist.

[8]  R. Gürtler,et al.  Reservoir host competence and the role of domestic and commensal hosts in the transmission of Trypanosoma cruzi. , 2015, Acta tropica.

[9]  F. Fontúrbel,et al.  Spatial distribution of an infectious disease in a small mammal community , 2015, The Science of Nature.

[10]  C. Botto-Mahan,et al.  Effects of mammal host diversity and density on the infection level of Trypanosoma cruzi in sylvatic kissing bugs , 2014, Medical and veterinary entomology.

[11]  P. Pliscoff,et al.  Effects of alternative sets of climatic predictors on species distribution models and associated estimates of extinction risk: A test with plants in an arid environment , 2014 .

[12]  Pieter T. J. Johnson,et al.  Biodiversity decreases disease through predictable changes in host community competence , 2013, Nature.

[13]  C. Botto-Mahan,et al.  Masking Behavior by Mepraia spinolai (Hemiptera: Reduviidae): Anti-predator Defense and Life History Trade-offs , 2013, Journal of Insect Behavior.

[14]  C. Botto-Mahan,et al.  Masking Behavior by Mepraia spinolai (Hemiptera: Reduviidae): Anti-predator Defense and Life History Trade-offs , 2013, Journal of Insect Behavior.

[15]  L. F. Chaves,et al.  Host Life History Strategy, Species Diversity, and Habitat Influence Trypanosoma cruzi Vector Infection in Changing Landscapes , 2012, PLoS neglected tropical diseases.

[16]  C. Lazzari,et al.  Response to heat in Rhodnius prolixus: the role of the thermal background. , 2011, Journal of insect physiology.

[17]  W. Hill,et al.  Zoonoses of rabbits and rodents. , 2011, The veterinary clinics of North America. Exotic animal practice.

[18]  R. Meentemeyer,et al.  Influence of Abiotic and Environmental Factors on the Density and Infection Prevalence of Ixodes pacificus (Acari: Ixodidae) with Borrelia burgdorferi , 2011, Journal of medical entomology.

[19]  C. Botto-Mahan,et al.  Temporal variation of Trypanosoma cruzi infection in native mammals in Chile. , 2010, Vector borne and zoonotic diseases.

[20]  Subhrendu K. Pattanayak,et al.  Biodiversity Loss Affects Global Disease Ecology , 2009 .

[21]  Aaron Christ,et al.  Mixed Effects Models and Extensions in Ecology with R , 2009 .

[22]  C. Botto-Mahan,et al.  Comparative population dynamics of the bug Mepraia spinolai, a sylvatic vector of Chagas’ disease, in different hosts , 2009, Medical and veterinary entomology.

[23]  C. Botto-Mahan,et al.  European rabbits (Oryctolagus cuniculus) are naturally infected with different Trypanosoma cruzi genotypes. , 2009, The American journal of tropical medicine and hygiene.

[24]  K. Lafferty Calling for an ecological approach to studying climate change and infectious diseases. , 2009, Ecology.

[25]  A. Zuur,et al.  Mixed Effects Models and Extensions in Ecology with R , 2009 .

[26]  E. Gould,et al.  Impact of climate change and other factors on emerging arbovirus diseases. , 2009, Transactions of the Royal Society of Tropical Medicine and Hygiene.

[27]  A. Bacigalupo,et al.  [First finding of Chagas disease vectors associated with wild bushes in the Metropolitan Region of Chile]. , 2006, Revista medica de Chile.

[28]  M. Miles,et al.  Field ecology of sylvatic Rhodnius populations (Heteroptera, Triatominae): risk factors for palm tree infestation in western Ecuador , 2005, Tropical medicine & international health : TM & IH.

[29]  Durland Fish,et al.  Forest fragmentation predicts local scale heterogeneity of Lyme disease risk , 2005, Oecologia.

[30]  R. Poulin Global warming and temperature-mediated increases in cercarial emergence in trematode parasites , 2005, Parasitology.

[31]  M. Canals,et al.  Seasonal variation in the home range and host availability of the blood-sucking insect Mepraia Spinolai in wild environment. , 2005, Acta tropica.

[32]  M. Lehane The Biology of Blood-Sucking in Insects: Index , 2005 .

[33]  C. Botto-Mahan,et al.  DNA evidence of Trypanosoma cruzi in the Chilean wild vector Mepraia spinolai (Hemiptera: Reduviidae). , 2005, Memorias do Instituto Oswaldo Cruz.

[34]  Andrew J Tatem,et al.  The global distribution and population at risk of malaria: past, present, and future. , 2004, The Lancet. Infectious diseases.

[35]  Jerald B. Johnson,et al.  Model selection in ecology and evolution. , 2004, Trends in ecology & evolution.

[36]  T. Jaenson,et al.  Distribution of the Common Tick, Ixodes ricinus (Acari: Ixodidae), in Different Vegetation Types in Southern Sweden , 2003, Journal of medical entomology.

[37]  M. Canals,et al.  Abundance of Mepraia spinolai in a Periurban zone of Chile. , 2002, Memorias do Instituto Oswaldo Cruz.

[38]  M. Molina,et al.  Blood Host Sources of Mepraia spinolai (Heteroptera: Reduviidae), Wild Vector of Chagas Disease in Chile , 2001, Journal of medical entomology.

[39]  H. Franco,et al.  Mepraia spinolai in the Southeastern Pacific Ocean Coast (Chile) - First insular record and feeding pattern on the Pan de Azúcar Island , 2000 .

[40]  P. Cattan,et al.  Population parameters of Triatoma spinolai (Heteroptera: Reduviidae) under different environmental conditions and densities. , 1998, Journal of medical entomology.

[41]  S. Catalá,et al.  Development of Trypanosoma cruzi in Triatoma infestans: influence of temperature and blood consumption. , 1995, The Journal of parasitology.

[42]  P. Wincker,et al.  Use of a Simplified Polymerase Chain Reaction Procedure to Detect Trypanosoma cruzi in Blood Samples from Chronic Chagasic Patients in a Rural Endemic Area , 1994 .

[43]  M. Lehane,et al.  The biology of blood-sucking in insects , 1991 .

[44]  G. Schaub,et al.  Direct transmission of Trypanosoma cruzi between vectors of Chagas' disease. , 1988, Acta tropica.

[45]  R. Ryckman Lizards: A Laboratory Host for Triatominae and Trypanosoma cruzi Chagas (Hemiptera: Reduviidae) (Protomonadida: Trypanosomidae) , 1954 .

[46]  R Core Team,et al.  R: A language and environment for statistical computing. , 2014 .

[47]  D. Holdstock Past, present--and future? , 2005, Medicine, conflict, and survival.

[48]  Ecology and Evolution of Infectious Diseases , 2004 .