Synthesis of porous–acoustic absorbing systems by an evolutionary optimization method

Topology optimization is frequently used to design structures and acoustic systems in a large range of engineering applications. In this work, a method is proposed for maximizing the absorbing performance of acoustic panels by using a coupled finite element model and evolutionary strategies. The goal is to find the best distribution of porous material for sound absorbing panels. The absorbing performance of the porous material samples in a Kundt tube is simulated using a coupled porous–acoustic finite element model. The equivalent fluid model is used to represent the foam material. The porous material model is coupled to a wave guide using a modal superposition technique. A sensitivity number indicating the optimum locations for porous material to be removed is derived and used in a numerical hard kill scheme. The sensitivity number is used to form an evolutionary porous material optimization algorithm which is verified through examples.

[1]  B. B. Bauer,et al.  Fundamentals of acoustics , 1963 .

[2]  Yi Min Xie,et al.  Evolutionary Structural Optimization , 1997 .

[3]  Grant P. Steven,et al.  Evolutionary structural optimization for dynamic problems , 1996 .

[4]  M. Biot Theory of Propagation of Elastic Waves in a Fluid‐Saturated Porous Solid. I. Low‐Frequency Range , 1956 .

[5]  N. Kikuchi,et al.  A homogenization method for shape and topology optimization , 1991 .

[6]  Franck Sgard,et al.  On the use of perforations to improve the sound absorption of porous materials , 2005 .

[7]  Franck Sgard,et al.  Acoustic absorption of macro-perforated porous materials , 2001 .

[8]  Raymond Panneton,et al.  An efficient finite element scheme for solving the three-dimensional poroelasticity problem in acoustics , 1997 .

[9]  M. Bendsøe,et al.  Generating optimal topologies in structural design using a homogenization method , 1988 .

[10]  Yeh-Liang Hsu,et al.  Generalization of two- and three-dimensional structural topology optimization , 2005 .

[11]  Y. Chevalier,et al.  Modelling poroelastic multilayered material for aircraft insulation , 2002 .

[12]  Martin P. Bendsøe Topology Optimization , 2009, Encyclopedia of Optimization.

[13]  Y. Xie,et al.  A simple evolutionary procedure for structural optimization , 1993 .

[14]  A. Craggs,et al.  Coupling of finite element acoustic absorption models , 1979 .

[16]  M. Bendsøe Optimal shape design as a material distribution problem , 1989 .

[17]  Yeon June Kang,et al.  Finite element modeling of isotropic elastic porous materials coupled with acoustical finite elements , 1995 .

[18]  Walter Lauriks,et al.  Biot theory and stress–strain equations in porous sound‐absorbing materials , 1988 .

[19]  Franck Sgard,et al.  On the use of poroelastic materials for the control of the sound radiated by a cavity backed plate , 2006 .

[20]  Raymond Panneton,et al.  A mixed displacement-pressure formulation for poroelastic materials , 1998 .

[21]  R. Farmani,et al.  Evolutionary multi-objective optimization in water distribution network design , 2005 .

[22]  Joel Koplik,et al.  Theory of dynamic permeability and tortuosity in fluid-saturated porous media , 1987, Journal of Fluid Mechanics.

[23]  A. Craggs,et al.  A finite element model for rigid porous absorbing materials , 1978 .

[24]  A. Baz,et al.  The vibro-acoustic response and analysis of a full-scale aircraft fuselage section for interior noise reduction. , 2005, Journal of the Acoustical Society of America.

[25]  Claude Boutin,et al.  Acoustic wave propagation in double porosity media. , 2003, The Journal of the Acoustical Society of America.

[26]  Raymond Panneton,et al.  Numerical prediction of sound transmission through finite multilayer systems with poroelastic materials , 1996 .

[27]  A. Craggs,et al.  A finite element model for acoustically lined small rooms , 1986 .

[28]  L. R. Quartararo,et al.  Noise and Vibration Control Engineering: Principles and Applications , 1992 .

[29]  Walter Lauriks,et al.  Evaluation of tortuosity in acoustic porous materials saturated by air , 1994 .

[30]  S. Kelly,et al.  Theory of Propagation of Elastic Waves in a Fluid-Saturated Porous Solid , 1956 .

[31]  Franck Castel Modélisation numérique de matériaux poreux hétérogènes : application à l'absorption basse fréquence , 2005 .

[32]  J. Allard Propagation of Sound in Porous Media: Modelling Sound Absorbing Materials , 1994 .

[33]  René Chambon,et al.  Dynamics of porous saturated media, checking of the generalized law of Darcy , 1985 .