Evaluating Local Approximations of the L 2 -Orthogonal Projection Between Non-Nested Finite Element Spaces

We present quantitative studies of transfer operators between finite element spaces associated with unrelated meshes. Several local approximations of the global L2-orthogonal projection are reviewed and evaluated computationally. The numerical studies in 3D provide the first estimates of the quantitative differences between a range of transfer operators between non-nested finite element spaces. We consider the standard finite element interpolation, Clement’s quasi-interpolation with different local polynomial degrees, the global L2-orthogonal projection, a local L2-quasi-projection via a discrete inner product, and a pseudo-L2-projection defined by a Petrov-Galerkin variational equation with a discontinuous test space. Understanding their qualitative and quantitative behaviors in this computational way is interesting per se; it could also be relevant in the context of discretization and solution techniques which make use of different non-nested meshes. It turns out that the pseudo-L2-projection approximates the actual L2-orthogonal projection best. The obtained results seem to be largely independent of the underlying computational domain; this is demonstrated by four examples (ball, cylinder, half torus and Stanford Bunny).

[1]  V. Thomée,et al.  The stability in _{} and ¹_{} of the ₂-projection onto finite element function spaces , 1987 .

[2]  Olaf Steinbach,et al.  On a generalized $L_2$ projection and some related stability estimates in Sobolev spaces , 2002, Numerische Mathematik.

[4]  Barbara Wohlmuth,et al.  On Polynomial Reproduction of Dual FE Bases , 2004 .

[5]  L. R. Scott,et al.  Finite element interpolation of nonsmooth functions satisfying boundary conditions , 1990 .

[6]  C. Carstensen Clément Interpolation and Its Role in Adaptive Finite Element Error Control , 2006 .

[7]  Michael Griebel,et al.  Multilevelmethoden als Iterationsverfahren über Erzeugendensystemen , 1994 .

[8]  C. Bernardi,et al.  A New Nonconforming Approach to Domain Decomposition : The Mortar Element Method , 1994 .

[9]  I. Daubechies,et al.  Biorthogonal bases of compactly supported wavelets , 1992 .

[10]  Jun Zou,et al.  Overlapping Schwarz methods on unstructured meshes using non-matching coarse grids , 1996 .

[11]  Carsten Carstensen,et al.  Merging the Bramble-Pasciak-Steinbach and the Crouzeix-Thomée criterion for H1-stability of the L2-projection onto finite element spaces , 2002, Math. Comput..

[12]  J. Douglas,et al.  The stability inLq of theL2-projection into finite element function spaces , 1974 .

[13]  Peter Oswald Intergrid transfer operators and multilevel preconditioners for nonconforming discretizations , 1997 .

[14]  H. Rentz-Reichert,et al.  UG – A flexible software toolbox for solving partial differential equations , 1997 .

[15]  C. Carstensen QUASI-INTERPOLATION AND A POSTERIORI ERROR ANALYSIS IN FINITE ELEMENT METHODS , 1999 .

[16]  Barbara I. Wohlmuth,et al.  Discretization Methods and Iterative Solvers Based on Domain Decomposition , 2001, Lecture Notes in Computational Science and Engineering.

[17]  Joseph E. Pasciak,et al.  On the stability of the L2 projection in H1(Omega) , 2002, Math. Comput..

[18]  Olaf Steinbach,et al.  Stability Estimates for Hybrid Coupled Domain Decomposition Methods , 2003 .

[19]  Wolfgang Hackbusch,et al.  Multi-grid methods and applications , 1985, Springer series in computational mathematics.

[20]  P. Oswald,et al.  Optimality of multilevel preconditioning for nonconforming P1 finite elements , 2008, Numerische Mathematik.

[21]  Xiao-Chuan Cai The Use of Pointwise Interpolation in Domain Decomposition Methods with Nonnested Meshes , 1995, SIAM J. Sci. Comput..

[22]  J. W. Ruge,et al.  4. Algebraic Multigrid , 1987 .

[23]  Thomas Apel Interpolation in h‐Version Finite Element Spaces , 2004 .

[24]  O. Schenk,et al.  ON FAST FACTORIZATION PIVOTING METHODS FOR SPARSE SYMMETRI C INDEFINITE SYSTEMS , 2006 .

[25]  H. Yserentant Old and new convergence proofs for multigrid methods , 1993, Acta Numerica.

[26]  Francesca Rapetti,et al.  The Influence of Quadrature Formulas in 2D and 3D Mortar Element Methods , 2002 .

[27]  Philippe G. Ciarlet,et al.  The finite element method for elliptic problems , 2002, Classics in applied mathematics.

[28]  Rolf Krause,et al.  Efficient simulation of multi‐body contact problems on complex geometries: A flexible decomposition approach using constrained minimization , 2009 .

[29]  Jinchao Xu,et al.  Convergence estimates for multigrid algorithms without regularity assumptions , 1991 .

[30]  P. Clément Approximation by finite element functions using local regularization , 1975 .

[31]  Olaf Schenk,et al.  Solving unsymmetric sparse systems of linear equations with PARDISO , 2004, Future Gener. Comput. Syst..

[32]  Barbara I. Wohlmuth,et al.  A Mortar Finite Element Method Using Dual Spaces for the Lagrange Multiplier , 2000, SIAM J. Numer. Anal..

[33]  Barbara Wohlmuth,et al.  Stable Lagrange multipliers for quadrilateral meshes of curved interfaces in 3D , 2007 .

[34]  D. Brandt,et al.  Multi-level adaptive solutions to boundary-value problems math comptr , 1977 .

[35]  Martin J. Gander,et al.  An Algorithm for Non-Matching Grid Projections with Linear Complexity , 2009 .

[36]  J. Pasciak,et al.  The analysis of multigrid algorithms with nonnested spaces or noninherited quadratic forms , 1991 .

[37]  Jinchao Xu,et al.  The auxiliary space method and optimal multigrid preconditioning techniques for unstructured grids , 1996, Computing.

[38]  Andrea Toselli,et al.  Domain decomposition methods : algorithms and theory , 2005 .

[39]  R. Bank,et al.  The hierarchical basis multigrid method , 1988 .

[40]  Barbara I. Wohlmuth,et al.  Biorthogonal bases with local support and approximation properties , 2007, Math. Comput..

[41]  Susanne C. Brenner,et al.  Convergence of nonconforming V-cycle and F-cycle multigrid algorithms for second order elliptic boundary value problems , 2003, Math. Comput..

[42]  L. R. Scott,et al.  The Mathematical Theory of Finite Element Methods , 1994 .

[43]  W. Dahmen,et al.  Biorthogonal Spline Wavelets on the Interval—Stability and Moment Conditions , 1999 .

[44]  Rolf Krause,et al.  Weak Information Transfer between Non-Matching Warped Interfaces , 2009 .

[45]  D. Braess,et al.  Multigrid methods for nonconforming finite element methods , 1990 .

[46]  Andrew V. Knyazev,et al.  Toward the Optimal Preconditioned Eigensolver: Locally Optimal Block Preconditioned Conjugate Gradient Method , 2001, SIAM J. Sci. Comput..

[47]  Panayot S. Vassilevski,et al.  Multiplier Spaces for the Mortar Finite Element Method in Three Dimensions , 2001, SIAM J. Numer. Anal..

[48]  Jinchao Xu,et al.  Some Estimates for a Weighted L 2 Projection , 1991 .

[49]  Panayot S. Vassilevski,et al.  Computational scales of Sobolev norms with application to preconditioning , 2000, Math. Comput..

[50]  David P. Dobkin,et al.  The quickhull algorithm for convex hulls , 1996, TOMS.

[51]  Faker Ben Belgacem,et al.  The Mortar finite element method with Lagrange multipliers , 1999, Numerische Mathematik.

[52]  R. Verfürth,et al.  Error estimates for some quasi-interpolation operators , 1999 .

[53]  Silvia Falletta The Approximate Integration in the Mortar Method Constraint , 2007 .

[54]  W. D. Evans,et al.  PARTIAL DIFFERENTIAL EQUATIONS , 1941 .