Evaluating Local Approximations of the L 2 -Orthogonal Projection Between Non-Nested Finite Element Spaces
暂无分享,去创建一个
[1] V. Thomée,et al. The stability in _{} and ¹_{} of the ₂-projection onto finite element function spaces , 1987 .
[2] Olaf Steinbach,et al. On a generalized $L_2$ projection and some related stability estimates in Sobolev spaces , 2002, Numerische Mathematik.
[4] Barbara Wohlmuth,et al. On Polynomial Reproduction of Dual FE Bases , 2004 .
[5] L. R. Scott,et al. Finite element interpolation of nonsmooth functions satisfying boundary conditions , 1990 .
[6] C. Carstensen. Clément Interpolation and Its Role in Adaptive Finite Element Error Control , 2006 .
[7] Michael Griebel,et al. Multilevelmethoden als Iterationsverfahren über Erzeugendensystemen , 1994 .
[8] C. Bernardi,et al. A New Nonconforming Approach to Domain Decomposition : The Mortar Element Method , 1994 .
[9] I. Daubechies,et al. Biorthogonal bases of compactly supported wavelets , 1992 .
[10] Jun Zou,et al. Overlapping Schwarz methods on unstructured meshes using non-matching coarse grids , 1996 .
[11] Carsten Carstensen,et al. Merging the Bramble-Pasciak-Steinbach and the Crouzeix-Thomée criterion for H1-stability of the L2-projection onto finite element spaces , 2002, Math. Comput..
[12] J. Douglas,et al. The stability inLq of theL2-projection into finite element function spaces , 1974 .
[13] Peter Oswald. Intergrid transfer operators and multilevel preconditioners for nonconforming discretizations , 1997 .
[14] H. Rentz-Reichert,et al. UG – A flexible software toolbox for solving partial differential equations , 1997 .
[15] C. Carstensen. QUASI-INTERPOLATION AND A POSTERIORI ERROR ANALYSIS IN FINITE ELEMENT METHODS , 1999 .
[16] Barbara I. Wohlmuth,et al. Discretization Methods and Iterative Solvers Based on Domain Decomposition , 2001, Lecture Notes in Computational Science and Engineering.
[17] Joseph E. Pasciak,et al. On the stability of the L2 projection in H1(Omega) , 2002, Math. Comput..
[18] Olaf Steinbach,et al. Stability Estimates for Hybrid Coupled Domain Decomposition Methods , 2003 .
[19] Wolfgang Hackbusch,et al. Multi-grid methods and applications , 1985, Springer series in computational mathematics.
[20] P. Oswald,et al. Optimality of multilevel preconditioning for nonconforming P1 finite elements , 2008, Numerische Mathematik.
[21] Xiao-Chuan Cai. The Use of Pointwise Interpolation in Domain Decomposition Methods with Nonnested Meshes , 1995, SIAM J. Sci. Comput..
[22] J. W. Ruge,et al. 4. Algebraic Multigrid , 1987 .
[23] Thomas Apel. Interpolation in h‐Version Finite Element Spaces , 2004 .
[24] O. Schenk,et al. ON FAST FACTORIZATION PIVOTING METHODS FOR SPARSE SYMMETRI C INDEFINITE SYSTEMS , 2006 .
[25] H. Yserentant. Old and new convergence proofs for multigrid methods , 1993, Acta Numerica.
[26] Francesca Rapetti,et al. The Influence of Quadrature Formulas in 2D and 3D Mortar Element Methods , 2002 .
[27] Philippe G. Ciarlet,et al. The finite element method for elliptic problems , 2002, Classics in applied mathematics.
[28] Rolf Krause,et al. Efficient simulation of multi‐body contact problems on complex geometries: A flexible decomposition approach using constrained minimization , 2009 .
[29] Jinchao Xu,et al. Convergence estimates for multigrid algorithms without regularity assumptions , 1991 .
[30] P. Clément. Approximation by finite element functions using local regularization , 1975 .
[31] Olaf Schenk,et al. Solving unsymmetric sparse systems of linear equations with PARDISO , 2004, Future Gener. Comput. Syst..
[32] Barbara I. Wohlmuth,et al. A Mortar Finite Element Method Using Dual Spaces for the Lagrange Multiplier , 2000, SIAM J. Numer. Anal..
[33] Barbara Wohlmuth,et al. Stable Lagrange multipliers for quadrilateral meshes of curved interfaces in 3D , 2007 .
[34] D. Brandt,et al. Multi-level adaptive solutions to boundary-value problems math comptr , 1977 .
[35] Martin J. Gander,et al. An Algorithm for Non-Matching Grid Projections with Linear Complexity , 2009 .
[36] J. Pasciak,et al. The analysis of multigrid algorithms with nonnested spaces or noninherited quadratic forms , 1991 .
[37] Jinchao Xu,et al. The auxiliary space method and optimal multigrid preconditioning techniques for unstructured grids , 1996, Computing.
[38] Andrea Toselli,et al. Domain decomposition methods : algorithms and theory , 2005 .
[39] R. Bank,et al. The hierarchical basis multigrid method , 1988 .
[40] Barbara I. Wohlmuth,et al. Biorthogonal bases with local support and approximation properties , 2007, Math. Comput..
[41] Susanne C. Brenner,et al. Convergence of nonconforming V-cycle and F-cycle multigrid algorithms for second order elliptic boundary value problems , 2003, Math. Comput..
[42] L. R. Scott,et al. The Mathematical Theory of Finite Element Methods , 1994 .
[43] W. Dahmen,et al. Biorthogonal Spline Wavelets on the Interval—Stability and Moment Conditions , 1999 .
[44] Rolf Krause,et al. Weak Information Transfer between Non-Matching Warped Interfaces , 2009 .
[45] D. Braess,et al. Multigrid methods for nonconforming finite element methods , 1990 .
[46] Andrew V. Knyazev,et al. Toward the Optimal Preconditioned Eigensolver: Locally Optimal Block Preconditioned Conjugate Gradient Method , 2001, SIAM J. Sci. Comput..
[47] Panayot S. Vassilevski,et al. Multiplier Spaces for the Mortar Finite Element Method in Three Dimensions , 2001, SIAM J. Numer. Anal..
[48] Jinchao Xu,et al. Some Estimates for a Weighted L 2 Projection , 1991 .
[49] Panayot S. Vassilevski,et al. Computational scales of Sobolev norms with application to preconditioning , 2000, Math. Comput..
[50] David P. Dobkin,et al. The quickhull algorithm for convex hulls , 1996, TOMS.
[51] Faker Ben Belgacem,et al. The Mortar finite element method with Lagrange multipliers , 1999, Numerische Mathematik.
[52] R. Verfürth,et al. Error estimates for some quasi-interpolation operators , 1999 .
[53] Silvia Falletta. The Approximate Integration in the Mortar Method Constraint , 2007 .
[54] W. D. Evans,et al. PARTIAL DIFFERENTIAL EQUATIONS , 1941 .