A pattern selection algorithm in kernel PCA applications
暂无分享,去创建一个
[1] Adam H. Monahan,et al. Nonlinear Principal Component Analysis: Tropical Indo–Pacific Sea Surface Temperature and Sea Level Pressure , 2001 .
[2] P. Holmes,et al. Turbulence, Coherent Structures, Dynamical Systems and Symmetry , 1996 .
[3] J. Wallace,et al. Annular Modes in the Extratropical Circulation. Part I: Month-to-Month Variability* , 2000 .
[4] James R. Schott,et al. Principles of Multivariate Analysis: A User's Perspective , 2002 .
[5] M. Kafatos,et al. P 1 . 5 KERNEL PCA ANALYSIS FOR REMOTE SENSING DATA , 2005 .
[6] Thomas W. Parsons,et al. Digital signal processing: theory, applications, and hardware , 1991 .
[7] P. Jones,et al. An Extension of the TahitiDarwin Southern Oscillation Index , 1987 .
[8] Gunnar Rätsch,et al. Kernel PCA and De-Noising in Feature Spaces , 1998, NIPS.
[9] Trevor F. Cox,et al. Metric multidimensional scaling , 2000 .
[11] Gunnar Rätsch,et al. Input space versus feature space in kernel-based methods , 1999, IEEE Trans. Neural Networks.
[12] J. Tenenbaum,et al. A global geometric framework for nonlinear dimensionality reduction. , 2000, Science.
[13] M. Kafatos,et al. Interannual Variability of Vegetation in the United States and Its Relation to El Niño/Southern Oscillation , 2000 .
[14] A. Cracknell. The advanced very high resolution radiometer , 1997 .
[15] Catherine A. Smith,et al. Singular value decomposition of wintertime sea surface temperature and 500-mb height anomalies , 1992 .
[16] William J. Emery,et al. Data Analysis Methods in Physical Oceanography , 1998 .
[17] H. Storch,et al. Statistical Analysis in Climate Research , 2000 .
[18] M. Kramer. Nonlinear principal component analysis using autoassociative neural networks , 1991 .
[19] S T Roweis,et al. Nonlinear dimensionality reduction by locally linear embedding. , 2000, Science.
[20] T. Hastie,et al. Principal Curves , 2007 .
[21] Bernhard Schölkopf,et al. Nonlinear Component Analysis as a Kernel Eigenvalue Problem , 1998, Neural Computation.
[22] Bernhard Schölkopf,et al. A kernel view of the dimensionality reduction of manifolds , 2004, ICML.