What are the computations of the cerebellum, the basal ganglia and the cerebral cortex?

[1]  Kenji Doya,et al.  Reinforcement Learning in Continuous Time and Space , 2000, Neural Computation.

[2]  J. Cohen,et al.  The role of locus coeruleus in the regulation of cognitive performance. , 1999, Science.

[3]  Scott T. Grafton,et al.  Abstract and Effector-Specific Representations of Motor Sequences Identified with PET , 1998, The Journal of Neuroscience.

[4]  J. Tanji,et al.  Role for cingulate motor area cells in voluntary movement selection based on reward. , 1998, Science.

[5]  Garrett E. Alexander Basal ganglia , 1998 .

[6]  Andrew G. Barto,et al.  Reinforcement learning , 1998 .

[7]  T. Robbins,et al.  Cognitive functions and corticostriatal circuits: insights from Huntington's disease , 1998, Trends in Cognitive Sciences.

[8]  D M Wolpert,et al.  Multiple paired forward and inverse models for motor control , 1998, Neural Networks.

[9]  Suzanna Becker Unsupervised learning with global objective functions , 1998 .

[10]  D. Wolpert,et al.  Internal models in the cerebellum , 1998, Trends in Cognitive Sciences.

[11]  J. Simpson,et al.  Microcircuitry and function of the inferior olive , 1998, Trends in Neurosciences.

[12]  F. Crépel,et al.  Cellular mechanisms of cerebellar LTD , 1998, Trends in Neurosciences.

[13]  P. Strick,et al.  Cerebellar output: motor and cognitive channels , 1998, Trends in Cognitive Sciences.

[14]  J. Desmond,et al.  Neuroimaging studies of the cerebellum: language, learning and memory , 1998, Trends in Cognitive Sciences.

[15]  Richard A. Andersen,et al.  Separate body- and world-referenced representations of visual space in parietal cortex , 1998, Nature.

[16]  M. Kawato,et al.  Temporal firing patterns of Purkinje cells in the cerebellar ventral paraflocculus during ocular following responses in monkeys II. Complex spikes. , 1998, Journal of neurophysiology.

[17]  W. Schultz,et al.  Learning of sequential movements by neural network model with dopamine-like reinforcement signal , 1998, Experimental Brain Research.

[18]  Kenji Doya,et al.  Reinforcement learning with multiple representations in the basal ganglia loops for sequential motor control , 1998, 1998 IEEE International Joint Conference on Neural Networks Proceedings. IEEE World Congress on Computational Intelligence (Cat. No.98CH36227).

[19]  Tatsuya Kimura,et al.  Cerebellar complex spikes encode both destinations and errors in arm movements , 1998, Nature.

[20]  O. Hikosaka,et al.  Transition of Brain Activation from Frontal to Parietal Areas in Visuomotor Sequence Learning , 1998, The Journal of Neuroscience.

[21]  M. Hallett,et al.  Cerebral Processes Related to Visuomotor Imagery and Generation of Simple Finger Movements Studied with Positron Emission Tomography , 1998, NeuroImage.

[22]  M. Arbib,et al.  Role of the cerebellum in reaching movements in humans. II. A neural model of the intermediate cerebellum , 1998, The European journal of neuroscience.

[23]  M. Arbib,et al.  Role of the cerebellum in reaching movements in humans. I. Distributed inverse dynamics control , 1998, The European journal of neuroscience.

[24]  M. Kawato,et al.  Temporal firing patterns of Purkinje cells in the cerebellar ventral paraflocculus during ocular following responses in monkeys I. Simple spikes. , 1998, Journal of neurophysiology.

[25]  T. Sejnowski,et al.  A Computational Model of How the Basal Ganglia Produce Sequences , 1998, Journal of Cognitive Neuroscience.

[26]  Terrence J. Sejnowski,et al.  The “independent components” of natural scenes are edge filters , 1997, Vision Research.

[27]  O. Hikosaka,et al.  Differential roles of monkey striatum in learning of sequential hand movement , 1997, Experimental Brain Research.

[28]  G. Berns,et al.  Brain regions responsive to novelty in the absence of awareness. , 1997, Science.

[29]  C. Gross,et al.  Visuospatial properties of ventral premotor cortex. , 1997, Journal of neurophysiology.

[30]  L. Brown,et al.  Sensory and cognitive functions of the basal ganglia , 1997, Current Opinion in Neurobiology.

[31]  A G Barto,et al.  Prediction of complex two-dimensional trajectories by a cerebellar model of smooth pursuit eye movement. , 1997, Journal of neurophysiology.

[32]  Peter Dayan,et al.  A Neural Substrate of Prediction and Reward , 1997, Science.

[33]  Richard S. J. Frackowiak,et al.  Anatomy of motor learning. I. Frontal cortex and attention to action. , 1997, Journal of neurophysiology.

[34]  S. Scott Comparison of onset time and magnitude of activity for proximal arm muscles and motor cortical cells before reaching movements. , 1997, Journal of neurophysiology.

[35]  A. Roberts,et al.  Neurons, Networks and Motor Behaviour , 1997 .

[36]  H. Nakahara Multiple representations in the basal ganglia loops for acquisition and execution of sequential motor control , 1997 .

[37]  J. Houk On the role of the cerebellum and basal ganglia in cognitive signal processing. , 1997, Progress in brain research.

[38]  J. Bower,et al.  Is the cerebellum sensory for motor's sake, or motor for sensory's sake: the view from the whiskers of a rat? , 1997, Progress in brain research.

[39]  R. Ivry The representation of temporal information in perception and motor control , 1996, Current Opinion in Neurobiology.

[40]  Steve Rogers,et al.  Adaptive Filter Theory , 1996 .

[41]  M. Denis,et al.  Functional Anatomy of Spatial Mental Imagery Generated from Verbal Instructions , 1996, The Journal of Neuroscience.

[42]  J. Houk,et al.  Computational significance of the cellular mechanisms for synaptic plasticity in Purkinje cells , 1996 .

[43]  A. Barto,et al.  Models of the cerebellum and motor learning , 1996 .

[44]  J Tanji,et al.  Role for cells in the presupplementary motor area in updating motor plans. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[45]  O. Hikosaka,et al.  Activation of human presupplementary motor area in learning of sequential procedures: a functional MRI study. , 1996, Journal of neurophysiology.

[46]  David J. Field,et al.  Emergence of simple-cell receptive field properties by learning a sparse code for natural images , 1996, Nature.

[47]  S. Lisberger,et al.  The Cerebellum: A Neuronal Learning Machine? , 1996, Science.

[48]  J. Bower,et al.  Cerebellum Implicated in Sensory Acquisition and Discrimination Rather Than Motor Control , 1996, Science.

[49]  Alan C. Evans,et al.  Functional Anatomy of Visuomotor Skill Learning in Human Subjects Examined with Positron Emission Tomography , 1996, The European journal of neuroscience.

[50]  J. Grafman,et al.  Visualizing Cortical Activation during Mental Calculation with Functional MRI , 1996, NeuroImage.

[51]  P. Dayan,et al.  A framework for mesencephalic dopamine systems based on predictive Hebbian learning , 1996, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[52]  J. Wickens,et al.  Dopamine reverses the depression of rat corticostriatal synapses which normally follows high-frequency stimulation of cortex In vitro , 1996, Neuroscience.

[53]  P. Calabresi,et al.  The corticostriatal projection: from synaptic plasticity to dysfunctions of the basal ganglia , 1996, Trends in Neurosciences.

[54]  D. Signorini,et al.  Neural networks , 1995, The Lancet.

[55]  A. Graybiel Building action repertoires: memory and learning functions of the basal ganglia , 1995, Current Opinion in Neurobiology.

[56]  Kenji Doya,et al.  Temporal Difference Learning in Continuous Time and Space , 1995, NIPS.

[57]  James C. Houk,et al.  A Predictive Switching Model of Cerebellar Movement Control , 1995, NIPS.

[58]  A. Georgopoulos Current issues in directional motor control , 1995, Trends in Neurosciences.

[59]  Scott T. Grafton,et al.  Functional Mapping of Sequence Learning in Normal Humans , 1995, Journal of Cognitive Neuroscience.

[60]  R. Andersen Encoding of intention and spatial location in the posterior parietal cortex. , 1995, Cerebral cortex.

[61]  Peter Ford Dominey,et al.  A Model of Corticostriatal Plasticity for Learning Oculomotor Associations and Sequences , 1995, Journal of Cognitive Neuroscience.

[62]  S P Wise,et al.  Distributed modular architectures linking basal ganglia, cerebellum, and cerebral cortex: their role in planning and controlling action. , 1995, Cerebral cortex.

[63]  W. Schultz,et al.  Context-dependent activity in primate striatum reflecting past and future behavioral events. , 1995 .

[64]  S. Kosslyn,et al.  A PET investigation of implicit and explicit sequence learning , 1995 .

[65]  Joel L. Davis,et al.  In : Models of Information Processing in the Basal Ganglia , 2008 .

[66]  A. Barto Adaptive Critics and the Basal Ganglia , 1995 .

[67]  Michael A. Arbib,et al.  The handbook of brain theory and neural networks , 1995, A Bradford book.

[68]  Andrew G. Barto,et al.  Learning to Act Using Real-Time Dynamic Programming , 1995, Artif. Intell..

[69]  P. Strick,et al.  Anatomical evidence for cerebellar and basal ganglia involvement in higher cognitive function. , 1994, Science.

[70]  D. Brooks,et al.  Motor sequence learning: a study with positron emission tomography , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[71]  A. Graybiel,et al.  Responses of tonically active neurons in the primate's striatum undergo systematic changes during behavioral sensorimotor conditioning , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[72]  Joel L. Davis,et al.  A Model of How the Basal Ganglia Generate and Use Neural Signals That Predict Reinforcement , 1994 .

[73]  R. F. Thompson,et al.  Organization of memory traces in the mammalian brain. , 1994, Annual review of neuroscience.

[74]  Masao Ito Movement and thought: identical control mechanisms by the cerebellum , 1993, Trends in Neurosciences.

[75]  A. L. Leiner,et al.  Cognitive and language functions of the human cerebellum , 1993, Trends in Neurosciences.

[76]  M. Kawato,et al.  Inverse-dynamics model eye movement control by Purkinje cells in the cerebellum , 1993, Nature.

[77]  W. Schultz,et al.  Responses of monkey dopamine neurons to reward and conditioned stimuli during successive steps of learning a delayed response task , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[78]  A. Barto,et al.  Distributed motor commands in the limb premotor network , 1993, Trends in Neurosciences.

[79]  M. Paulin The role of the cerebellum in motor control and perception. , 1993, Brain, behavior and evolution.

[80]  Heekuck Oh,et al.  Neural Networks for Pattern Recognition , 1993, Adv. Comput..

[81]  D. Wolpert,et al.  Is the cerebellum a smith predictor? , 1993, Journal of motor behavior.

[82]  M. Kawato,et al.  The cerebellum and VOR/OKR learning models , 1992, Trends in Neurosciences.

[83]  W. Singer,et al.  Agonists of cholinergic and noradrenergic receptors facilitate synergistically the induction of long-term potentiation in slices of rat visual cortex , 1992, Brain Research.

[84]  R. A. Brooks,et al.  Intelligence without Representation , 1991, Artif. Intell..

[85]  W. Singer,et al.  Different voltage-dependent thresholds for inducing long-term depression and long-term potentiation in slices of rat visual cortex , 1990, Nature.

[86]  G. E. Alexander,et al.  Functional architecture of basal ganglia circuits: neural substrates of parallel processing , 1990, Trends in Neurosciences.

[87]  Kumpati S. Narendra,et al.  Identification and control of dynamical systems using neural networks , 1990, IEEE Trans. Neural Networks.

[88]  Terence D. Sanger,et al.  Optimal unsupervised learning in a single-layer linear feedforward neural network , 1989, Neural Networks.

[89]  R Linsker,et al.  From basic network principles to neural architecture: emergence of spatial-opponent cells. , 1986, Proceedings of the National Academy of Sciences of the United States of America.

[90]  R. Linsker,et al.  From basic network principles to neural architecture , 1986 .

[91]  伊藤 正男 The cerebellum and neural control , 1984 .

[92]  D. C. Essen,et al.  Hierarchical organization and functional streams in the visual cortex , 1983, Trends in Neurosciences.

[93]  Richard S. Sutton,et al.  Neuronlike adaptive elements that can solve difficult learning control problems , 1983, IEEE Transactions on Systems, Man, and Cybernetics.

[94]  Masao Ito,et al.  Climbing fibre induced depression of both mossy fibre responsiveness and glutamate sensitivity of cerebellar Purkinje cells , 1982, The Journal of physiology.

[95]  T. Kohonen Self-organized formation of topographically correct feature maps , 1982 .

[96]  W. Cowan The development of the brain. , 1979, Scientific American.

[97]  T. Tsumoto,et al.  Cross-depression: an electrophysiological manifestation of binocular competition in the developing visual cortex , 1979, Brain Research.

[98]  G. Shepherd The Synaptic Organization of the Brain , 1979 .

[99]  Roman Bek,et al.  Discourse on one way in which a quantum-mechanics language on the classical logical base can be built up , 1978, Kybernetika.

[100]  W. Precht The synaptic organization of the brain G.M. Shepherd, Oxford University Press (1975). 364 pp., £3.80 (paperback) , 1976, Neuroscience.

[101]  J. Albus A Theory of Cerebellar Function , 1971 .

[102]  G. F. Cooper,et al.  Development of the Brain depends on the Visual Environment , 1970, Nature.

[103]  D. N. Spinelli,et al.  Visual Experience Modifies Distribution of Horizontally and Vertically Oriented Receptive Fields in Cats , 1970, Science.

[104]  D. Marr A theory of cerebellar cortex , 1969, The Journal of physiology.

[105]  S. Grillner,et al.  Neurons , Networks , and Motor Behavior , 2022 .