N-SIFT: N-DIMENSIONAL SCALE INVARIANT FEATURE TRANSFORM FOR MATCHING MEDICAL IMAGES

We propose the n -dimensional scale invariant feature transform ( n-SIFT) method for extracting and matching salient features from scalar images of arbitrary dimensionality, and compare this method's performance to other related features. The proposed features extend the concepts used for 2-D scalar images in the computer vision SIFT technique for extracting and matching distinctive scale invariant features. We apply the features to images of arbitrary dimensionality through the use of hyperspherical coordinates for gradients and multidimensional histograms to create the feature vectors. We analyze the performance of a fully automated multimodal medical image matching technique based on these features, and successfully apply the technique to determine accurate feature point correspondence between pairs of 3-D MRI images and dynamic 3D + time CT data.

[1]  Christopher G. Harris,et al.  A Combined Corner and Edge Detector , 1988, Alvey Vision Conference.

[2]  Astrid Franz,et al.  An Adaptive Irregular Grid Approach Using SIFT Features for Elastic Medical Image Registration , 2006, Bildverarbeitung für die Medizin.

[3]  Alan C. Evans,et al.  BrainWeb: Online Interface to a 3D MRI Simulated Brain Database , 1997 .

[4]  Qi Zhang,et al.  SIFT implementation and optimization for multi-core systems , 2008, 2008 IEEE International Symposium on Parallel and Distributed Processing.

[5]  Horst Bischof,et al.  SIFT and Shape Context for Feature-Based Nonlinear Registration of Thoracic CT Images , 2006, CVAMIA.

[6]  Tony Lindeberg,et al.  Detecting salient blob-like image structures and their scales with a scale-space primal sketch: A method for focus-of-attention , 1993, International Journal of Computer Vision.

[7]  Purang Abolmaesumi,et al.  Deformable registration using scale space keypoints , 2006, SPIE Medical Imaging.

[8]  S A Beaman,et al.  The use of difference of Gaussian image filtering to assess objectively the correlation between breast vascularity and breast cancer. , 1988, Physics in medicine and biology.

[9]  Hao Feng,et al.  Parallelization and characterization of SIFT on multi-core systems , 2008, 2008 IEEE International Symposium on Workload Characterization.

[10]  Ghassan Hamarneh,et al.  N-Sift: N-Dimensional Scale Invariant Feature Transform for Matching Medical Images , 2007, ISBI.

[11]  R. Robb,et al.  The NLM-Mayo Image Collection: Common Access to Uncommon Data , 2005, The Insight Journal.

[12]  R. Sukthankar,et al.  PCA-SIFT: a more distinctive representation for local image descriptors , 2004, Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2004. CVPR 2004..

[13]  G. Hamarneh,et al.  Scale Invariant Feature Transform for n-Dimensional Images (n-SIFT) , 2007, The Insight Journal.

[14]  Carlo Tomasi,et al.  Good features to track , 1994, 1994 Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.

[15]  G LoweDavid,et al.  Distinctive Image Features from Scale-Invariant Keypoints , 2004 .

[16]  Mark Hedley,et al.  Fast corner detection , 1998, Image Vis. Comput..

[17]  Bo Qiu,et al.  A Refined SVM Applied in Medical Image Annotation , 2006, CLEF.

[18]  Dinggang Shen,et al.  Determining correspondence in 3-D MR brain images using attribute vectors as morphological signatures of voxels , 2004, IEEE Transactions on Medical Imaging.

[19]  John F. Canny,et al.  A Computational Approach to Edge Detection , 1986, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[20]  David G. Lowe,et al.  Object recognition from local scale-invariant features , 1999, Proceedings of the Seventh IEEE International Conference on Computer Vision.

[21]  Tony Lindeberg,et al.  Feature Detection with Automatic Scale Selection , 1998, International Journal of Computer Vision.

[22]  Jie Tian,et al.  Rapid Multi-modality preRegistration based on SIFT descriptor , 2006, 2006 International Conference of the IEEE Engineering in Medicine and Biology Society.

[23]  Jiri Matas,et al.  Robust wide-baseline stereo from maximally stable extremal regions , 2004, Image Vis. Comput..

[24]  Cordelia Schmid,et al.  A performance evaluation of local descriptors , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[25]  Barbara Caputo,et al.  Discriminative cue integration for medical image annotation , 2008, Pattern Recognit. Lett..

[26]  Timothy F. Cootes,et al.  Active Appearance Models , 1998, ECCV.

[27]  Timothy F. Cootes,et al.  Active Shape Models-Their Training and Application , 1995, Comput. Vis. Image Underst..

[28]  Yakup Genc,et al.  GPU-based Video Feature Tracking And Matching , 2006 .

[29]  Stephen M. Smith,et al.  SUSAN—A New Approach to Low Level Image Processing , 1997, International Journal of Computer Vision.