Improving Brain Storm Optimization Algorithm via Simplex Search

Through modeling human's brainstorming process, the brain storm optimization (BSO) algorithm has become a promising population based evolution algorithm. However, BSO is often good at global exploration but not good enough at local exploitation, just like most global optimization algorithms. In this paper, the Nelder-Mead's Simplex (NMS) method is adopted in a simple version of BSO. Our goal is to combine BSO's exploration ability and NMS's exploitation ability together, and develop an enhanced BSO via a better balance between global exploration and local exploitation. Large number of experimental results are reported, and the proposed algorithm is shown to perform better than both BSO and NMS.

[1]  Zhi-hui Zhan,et al.  A modified brain storm optimization , 2012, 2012 IEEE Congress on Evolutionary Computation.

[2]  Morteza Alinia Ahandani,et al.  Hybridizing local search algorithms for global optimization , 2014, Comput. Optim. Appl..

[3]  Yu Jin,et al.  A generalized dynamic fuzzy neural network based on singular spectrum analysis optimized by brain storm optimization for short-term wind speed forecasting , 2017, Appl. Soft Comput..

[4]  Jun Zhang,et al.  Parameter investigation in brain storm optimization , 2013, 2013 IEEE Symposium on Swarm Intelligence (SIS).

[5]  Yali Wu,et al.  Modified Brain Storm Optimization Algorithm for Multimodal Optimization , 2014, ICSI.

[6]  Yuhui Shi,et al.  An Optimization Algorithm Based on Brainstorming Process , 2011, Int. J. Swarm Intell. Res..

[7]  Sipi Dubey,et al.  Fuzzy Brain Storm Optimization and Adaptive Thresholding for Multimodal Vein-Based Recognition System , 2017, Int. J. Pattern Recognit. Artif. Intell..

[8]  Yuhui Shi,et al.  Predator–Prey Brain Storm Optimization for DC Brushless Motor , 2013, IEEE Transactions on Magnetics.

[9]  Yuhui Shi,et al.  Brain Storm Optimization Algorithm , 2011, ICSI.

[10]  Mohammed El-Abd,et al.  Global-best brain storm optimization algorithm , 2017, Swarm Evol. Comput..

[11]  Ye Xu,et al.  Parameter identification of chaotic systems by hybrid Nelder-Mead simplex search and differential evolution algorithm , 2011, Expert Syst. Appl..

[12]  Gang Yang,et al.  MrDIRECT: a multilevel robust DIRECT algorithm for global optimization problems , 2015, J. Glob. Optim..

[13]  John A. Nelder,et al.  A Simplex Method for Function Minimization , 1965, Comput. J..

[14]  Christodoulos A. Floudas,et al.  A review of recent advances in global optimization , 2009, J. Glob. Optim..

[15]  Yuhui Shi,et al.  Hybrid brain storm optimisation and simulated annealing algorithm for continuous optimisation problems , 2016, Int. J. Bio Inspired Comput..

[16]  Yuhui Shi,et al.  Advanced discussion mechanism-based brain storm optimization algorithm , 2015, Soft Comput..

[17]  Nikolaos V. Sahinidis,et al.  Derivative-free optimization: a review of algorithms and comparison of software implementations , 2013, J. Glob. Optim..

[18]  Jorge J. Moré,et al.  Digital Object Identifier (DOI) 10.1007/s101070100263 , 2001 .

[19]  Yuhui Shi,et al.  Brain storm optimization algorithm in objective space , 2015, 2015 IEEE Congress on Evolutionary Computation (CEC).

[20]  Qunfeng Liu,et al.  A modified DIRECT algorithm with bilevel partition , 2014, J. Glob. Optim..

[21]  Jun Zhang,et al.  Benchmarking Stochastic Algorithms for Global Optimization Problems by Visualizing Confidence Intervals , 2017, IEEE Transactions on Cybernetics.

[22]  Chunquan Li,et al.  A Simple Brain Storm Optimization Algorithm With a Periodic Quantum Learning Strategy , 2018, IEEE Access.

[23]  Wei Chen,et al.  A Simple Brain Storm Optimization Algorithm via Visualizing Confidence Intervals , 2017, SEAL.

[24]  Qunfeng Liu,et al.  Linear scaling and the DIRECT algorithm , 2012, Journal of Global Optimization.

[25]  Stefan M. Wild,et al.  Benchmarking Derivative-Free Optimization Algorithms , 2009, SIAM J. Optim..

[26]  Junfeng Chen,et al.  Brain storm optimization algorithm: a review , 2016, Artificial Intelligence Review.

[27]  Yuhui Shi,et al.  Developmental Swarm Intelligence: Developmental Learning Perspective of Swarm Intelligence Algorithms , 2014, Int. J. Swarm Intell. Res..