The scale-free topology of market investments

[1]  Charles Gide,et al.  Cours d'économie politique , 1911 .

[2]  P. Goel,et al.  Mathematical models as a tool for the social sciences , 1981 .

[3]  F. Roush Mathematical models as a tool for the social sciences : Bruce J. West, ed., New York: Gordon and Breach, 1980, 120 pp., US $26.50 , 1982 .

[4]  R. Mantegna,et al.  Scaling behaviour in the dynamics of an economic index , 1995, Nature.

[5]  L. Amaral,et al.  Scaling behaviour in the growth of companies , 1996, Nature.

[6]  S. Solomon,et al.  NEW EVIDENCE FOR THE POWER-LAW DISTRIBUTION OF WEALTH , 1997 .

[7]  Guido Caldarelli,et al.  Scaling in currency exchange , 1997 .

[8]  M. Marchesi,et al.  Scaling and criticality in a stochastic multi-agent model of a financial market , 1999, Nature.

[9]  V. Plerou,et al.  Scaling of the distribution of fluctuations of financial market indices. , 1999, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[10]  M. Mézard,et al.  Wealth condensation in a simple model of economy , 2000, cond-mat/0002374.

[11]  J. Bouchaud,et al.  Theory of financial risks : from statistical physics to risk management , 2000 .

[12]  A. Barabasi,et al.  Weighted evolving networks. , 2001, Physical review letters.

[13]  Victor M. Yakovenko,et al.  Exponential and power-law probability distributions of wealth and income in the United Kingdom and the United States , 2001, cond-mat/0103544.

[14]  Albert-László Barabási,et al.  Statistical mechanics of complex networks , 2001, ArXiv.

[15]  G. Weisbuch,et al.  Decision making dynamics in corporate boards , 2002, cond-mat/0209590.

[16]  M. A. Muñoz,et al.  Scale-free networks from varying vertex intrinsic fitness. , 2002, Physical review letters.

[17]  V. Plerou,et al.  A theory of power-law distributions in financial market fluctuations , 2003, Nature.

[18]  F. Lillo,et al.  Topology of correlation-based minimal spanning trees in real and model markets. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[19]  A. Arenas,et al.  Models of social networks based on social distance attachment. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.