Generalized robust conjoint estimation

We introduce methods from statistical learning theory to the field of conjoint analysis for preference modeling. We present a method for estimating preference models that can be highly nonlinear and robust to noise. Like recently developed polyhedral methods for conjoint analysis, our method is based on computationally efficient optimization techniques. We compare our method with standard logistic regression, hierarchical Bayes, and the polyhedral methods using standard, widely used simulation data. The experiments show that the proposed method handles noise significantly better than both logistic regression and the recent polyhedral methods and is never worse than the best method among the three mentioned above. It can also be used for estimating nonlinearities in preference models faster and better than all other methods. Finally, a simple extension for handling heterogeneity shows promising results relative to hierarchical Bayes. The proposed method can therefore be useful, for example, for analyzing large amounts of data that are noisy or for estimating interactions among product features.

[1]  Vladimir Vapnik,et al.  Chervonenkis: On the uniform convergence of relative frequencies of events to their probabilities , 1971 .

[2]  D. McFadden Conditional logit analysis of qualitative choice behavior , 1972 .

[3]  Allan D. Shocker,et al.  Linear programming techniques for multidimensional analysis of preferences , 1973 .

[4]  A. Tversky,et al.  Judgment under Uncertainty: Heuristics and Biases , 1974, Science.

[5]  C. Manski The structure of random utility models , 1977 .

[6]  A. N. Tikhonov,et al.  Solutions of ill-posed problems , 1977 .

[7]  P. Green,et al.  Conjoint Analysis in Consumer Research: Issues and Outlook , 1978 .

[8]  Paul E. Green,et al.  Robustness of Conjoint Analysis: Some Monté Carlo Results , 1978 .

[9]  Madhav N. Segal,et al.  Reliability of Conjoint Analysis: Contrasting Data Collection Procedures , 1982 .

[10]  Naresh K. Malhotra,et al.  Improving Predictive Power of Conjoint Analysis by Constrained Parameter Estimation , 1983 .

[11]  C. J. Stone,et al.  Additive Regression and Other Nonparametric Models , 1985 .

[12]  D. McFadden The Choice Theory Approach to Market Research , 1986 .

[13]  Mark D. Uncles,et al.  Discrete Choice Analysis: Theory and Application to Travel Demand , 1987 .

[14]  Philippe Cattin,et al.  Commercial Use of Conjoint Analysis: An Update , 1989 .

[15]  Paul E. Green,et al.  Conjoint Analysis in Marketing: New Developments with Implications for Research and Practice , 1990 .

[16]  Grace Wahba,et al.  Spline Models for Observational Data , 1990 .

[17]  M. Ben-Akiva,et al.  A Multinational Probit Formulation for Large Choice Sets , 1991 .

[18]  N. Alon,et al.  Scale-sensitive Dimensions, Uniform Convergence, , 1993 .

[19]  Noga Alon,et al.  Scale-sensitive dimensions, uniform convergence, and learnability , 1993, Proceedings of 1993 IEEE 34th Annual Foundations of Computer Science.

[20]  Mark J. Garratt,et al.  Efficient Experimental Design with Marketing Research Applications , 1994 .

[21]  Jordan J. Louviere,et al.  Modeling Hierarchical Conjoint Processes with Integrated Choice Experiments , 1994 .

[22]  Robert E. Schapire,et al.  Efficient distribution-free learning of probabilistic concepts , 1990, Proceedings [1990] 31st Annual Symposium on Foundations of Computer Science.

[23]  Karl T. Ulrich,et al.  Product Design and Development , 1995 .

[24]  M. Ben-Akiva,et al.  Discrete choice models with latent choice sets , 1995 .

[25]  J. Carroll,et al.  Guest Editorial: Psychometric Methods in Marketing Research: Part I, Conjoint Analysis , 1995 .

[26]  J. Douglas Carroll,et al.  Psychometric Methods in Marketing Research: Part I, Conjoint Analysis , 1995 .

[27]  Yoav Freund,et al.  A decision-theoretic generalization of on-line learning and an application to boosting , 1995, EuroCOLT.

[28]  Tomaso A. Poggio,et al.  Regularization Theory and Neural Networks Architectures , 1995, Neural Computation.

[29]  László Györfi,et al.  A Probabilistic Theory of Pattern Recognition , 1996, Stochastic Modelling and Applied Probability.

[30]  Bernhard Schölkopf,et al.  Incorporating Invariances in Support Vector Learning Machines , 1996, ICANN.

[31]  P. Lenk,et al.  Hierarchical Bayes Conjoint Analysis: Recovery of Partworth Heterogeneity from Reduced Experimental Designs , 1996 .

[32]  Michel Wedel,et al.  Representing heterogeneity in consumer response models , 1997 .

[33]  Pradeep K. Chintagunta,et al.  Representing Heterogeneity in Consumer Response Models 1996 Choice Conference Participants , 1997 .

[34]  Jaideep Srivastava,et al.  Web mining: information and pattern discovery on the World Wide Web , 1997, Proceedings Ninth IEEE International Conference on Tools with Artificial Intelligence.

[35]  M. Ben-Akiva,et al.  Modeling Methods for Discrete Choice Analysis , 1997 .

[36]  John N. Tsitsiklis,et al.  Introduction to linear optimization , 1997, Athena scientific optimization and computation series.

[37]  Noga Alon,et al.  Scale-sensitive dimensions, uniform convergence, and learnability , 1997, JACM.

[38]  Massimiliano Pontil,et al.  Properties of Support Vector Machines , 1998, Neural Computation.

[39]  Trevor Hastie,et al.  Additive Logistic Regression : a Statistical , 1998 .

[40]  Vladimir Vapnik,et al.  Statistical learning theory , 1998 .

[41]  Greg M. Allenby,et al.  On the Heterogeneity of Demand , 1998 .

[42]  Michel Bierlaire,et al.  DISCRETE CHOICE MODELS , 1998 .

[43]  Peter E. Rossi,et al.  Marketing models of consumer heterogeneity , 1998 .

[44]  Greg M. Allenby,et al.  A Hierarchical Bayes Model of Primary and Secondary Demand , 1998 .

[45]  Tomaso Poggio,et al.  Incorporating prior information in machine learning by creating virtual examples , 1998, Proc. IEEE.

[46]  Daphne Koller,et al.  Support Vector Machine Active Learning with Application sto Text Classification , 2000, ICML.

[47]  D. Hensher,et al.  Stated Choice Methods: Analysis and Applications , 2000 .

[48]  Kristin P. Bennett,et al.  Duality and Geometry in SVM Classifiers , 2000, ICML.

[49]  Ralf Herbrich,et al.  Large margin rank boundaries for ordinal regression , 2000 .

[50]  Thore Graepel,et al.  Large Margin Rank Boundaries for Ordinal Regression , 2000 .

[51]  Tomaso A. Poggio,et al.  Regularization Networks and Support Vector Machines , 2000, Adv. Comput. Math..

[52]  Gunnar Rätsch,et al.  Active Learning in the Drug Discovery Process , 2001, NIPS.

[53]  Ji Zhu,et al.  Kernel Logistic Regression and the Import Vector Machine , 2001, NIPS.

[54]  Joel Huber,et al.  Improving Parameter Estimates and Model Prediction by Aggregate Customization in Choice Experiments , 2001 .

[55]  John R. Hauser,et al.  Fast Polyhedral Adaptive Conjoint Estimation , 2002 .

[56]  Daphne Koller,et al.  Support Vector Machine Active Learning with Applications to Text Classification , 2000, J. Mach. Learn. Res..

[57]  Ron Kohavi,et al.  Mining e-commerce data: the good, the bad, and the ugly , 2001, KDD '01.

[58]  Kristin P. Bennett,et al.  MARK: a boosting algorithm for heterogeneous kernel models , 2002, KDD.

[59]  Rick L. Andrews,et al.  Hierarchical Bayes versus Finite Mixture Conjoint Analysis Models: A Comparison of Fit, Prediction, and Partworth Recovery , 2002 .

[60]  Tomaso Poggio,et al.  Everything old is new again: a fresh look at historical approaches in machine learning , 2002 .

[61]  K. Pauwels How Dynamic Consumer Response, Dynamic Competitor Response and Expanded Company Action Shape Longterm Marketing Effectiveness , 2003 .

[62]  Kamel Jedidi,et al.  Measuring Heterogeneous Reservation Prices for Product Bundles , 2003 .

[63]  John R. Hauser,et al.  Polyhedral Methods for Adaptive Choice-Based Conjoint Analysis , 2004 .

[64]  Tomaso A. Poggio,et al.  Image Representations and Feature Selection for Multimedia Database Search , 2003, IEEE Trans. Knowl. Data Eng..

[65]  Corinna Cortes,et al.  Support-Vector Networks , 1995, Machine Learning.

[66]  K. Pauwels How Dynamic Consumer Response, Competitor Response, Company Support, and Company Inertia Shape Long-Term Marketing Effectiveness , 2004 .

[67]  Tomaso A. Poggio,et al.  Statistical Learning Theory: A Primer , 2000, International Journal of Computer Vision.

[68]  David J. Curry,et al.  Prediction in Marketing Using the Support Vector Machine , 2005 .