Diversity of the communities of acidophilic chemolithotrophic microorganisms in natural and technogenic ecosystems

[1]  I. Tsaplina,et al.  Diversity of the communities of acidophilic chemolithotrophic microorganisms in natural and technogenic ecosystems , 2012, Microbiology.

[2]  B. Kuznetsov,et al.  Species composition of the association of acidophilic chemolithotrophic microorganisms participating in the oxidation of gold-arsenic ore concentrate , 2011, Microbiology.

[3]  Y. Trotsenko,et al.  Methanol metabolism of the rhizosphere phytosymbiont Methylobacterium nodulans , 2011, Microbiology.

[4]  T. Pivovarova,et al.  Polymorphism of Sulfobacillus thermosulfidooxidans strains dominating in processes of high-temperature oxidation of gold-arsenic concentrate , 2011, Microbiology.

[5]  I. Tsaplina,et al.  Functional diversity of an aboriginal microbial community oxidizing the ore with high antimony content at 46–47°C , 2010, Microbiology.

[6]  T. A. Pivovarova,et al.  Species and strain composition of microbial associations oxidizing different types of gold-bearing concentrates , 2010, Applied Biochemistry and Microbiology.

[7]  T. Tourova,et al.  Identification of the dominant bacterium of two-stage biooxidation of gold-arsenic concentrate , 2010, Microbiology.

[8]  M. A. Egorova,et al.  Regulation of metabolic pathways in sulfobacilli under different aeration regimes , 2010, Microbiology.

[9]  M. A. Egorova,et al.  Response to oxygen limitation in bacteria of the genus sulfobacillus , 2010, Microbiology.

[10]  T. Pivovarova,et al.  Strain polymorphism of the plasmid profiles in Sulfobacillus species , 2009, Microbiology.

[11]  Pedro A. Galleguillos,et al.  Microbial Diversity and Genetic Response to Stress Conditions of Extremophilic Bacteria Isolated from the Escondida Copper Mine , 2009 .

[12]  Á. Aguilera,et al.  Microbial Ecology of a Natural Extreme Acidic Environment: Lessons from Río Tinto , 2009 .

[13]  A. Schippers,et al.  Diversity of Iron Oxidizing Bacteria from Various Sulfidic Mine Waste Dumps , 2009 .

[14]  I. Dinkla,et al.  Acidianus Brierleyi is the Dominant Thermoacidophile in a Bioleaching Community Processing Chalcopyrite Containing Concentrates at 70°C , 2009 .

[15]  K. Hallberg New Perspectives in Mine Water Microbiology , 2009 .

[16]  R. Amils,et al.  Characterization of the Anoxic Sediments of Rio Tinto: Biohydrometallurgical Implications , 2009 .

[17]  V. Leão,et al.  Microbial Diversity in a Brazilian Acid Moderate Drainage and Experimental Nickel Bioleaching System , 2009 .

[18]  W. Sand,et al.  Evidence for Iron- and Sulfur-Oxidizing Bacteria and Archaea in a Currently Active Lignite Mining Area of Lusatia (Eastern Germany) , 2009 .

[19]  J. Molina,et al.  Comparison between the Bacterial Populations from Solutions and Minerals in 1 m Test Columns and the Industrial Low Grade Copper Sulphide Bioleaching Process in the Escondida Mine, Chile , 2009 .

[20]  P. Spolaore,et al.  Adaptation and Evolution of Microbial Consortia in a Stirred Tank Reactor Bioleaching System: Indigenous Population versus a Defined Consortium , 2009 .

[21]  E. Donati,et al.  Acidophilic Microorganisms from Geothermal Copahue Volcano System. Assessment of Biotechnological Applications , 2009 .

[22]  A. Schippers,et al.  Geomicrobiology of Sulfidic Mine Dumps: A Short Review , 2009 .

[23]  T. Kondrat'eva,et al.  Patterns of pyrite oxidation by different microorganisms , 2009, Microbiology.

[24]  Chen Bowei,et al.  Bacterial community structure change during pyrite bioleaching process: Effect of pH and aeration , 2009 .

[25]  E. González-Toril,et al.  Acidithiobacillus ferrivorans, sp. nov.; facultatively anaerobic, psychrotolerant iron-, and sulfur-oxidizing acidophiles isolated from metal mine-impacted environments , 2009, Extremophiles.

[26]  M. A. Egorova,et al.  Phenotypic properties of Sulfobacillus thermotolerans: Comparative aspects , 2008, Microbiology.

[27]  C. Joulian,et al.  Sulfobacillus benefaciens sp. nov., an acidophilic facultative anaerobic Firmicute isolated from mineral bioleaching operations , 2008, Extremophiles.

[28]  A. Lysenko,et al.  Genotypic and phenotypic polymorphism of environmental strains of the moderately thermophilic bacterium Sulfobacillus sibiricus , 2008, Microbiology.

[29]  C. Joulian,et al.  Microbial Populations in a 110 Ton-Scale Column for the Recovery of Metals from Black Schist Ores , 2007 .

[30]  D. Johnson,et al.  Comparison of Microbiological Populations of Mineral Heaps and Mine Wastes of Differing Ages in Active and Abandoned Copper Mines , 2007 .

[31]  R. Amils,et al.  The Use of CARD-FISH to Evaluate the Quantitative Microbial Ecology Involved in the Continuous Bioleaching of a Cobaltiferrous Pyrite , 2007 .

[32]  Zhiguo He,et al.  Microbial Communities in Acid Mine Water from Two Different Copper Mines in China , 2007 .

[33]  C. Inoue,et al.  Microbial Diversity in an Iron Oxidation Tank of an AMD Treatment Plant at an Abandoned Sulphur Mine , 2007 .

[34]  Danny Castillo,et al.  Monitoring of Microbial Community Inhabiting a Low-Grade Copper Sulphide Ore by Quantitative Real-Time PCR Analysis of 16S rRNA Genes , 2007 .

[35]  E. Watkin,et al.  Analysis of the Microbial Community in the Leachate Collected from an Experimental Bioleaching Column by Cloning and RFLP , 2007 .

[36]  Pinaki Sar,et al.  Molecular Assessment of Microbial Diversity and Community Structure at Uranium Mines of Jaduguda, India , 2007 .

[37]  Yue-hua Hu,et al.  Molecular diversity of microbial community in acid mine drainages of Yunfu sulfide mine , 2007, Extremophiles.

[38]  M. Ishii,et al.  Acidianus manzaensis sp. nov., a Novel Thermoacidophilic Archaeon Growing Autotrophically by the Oxidation of H2 with the Reduction of Fe3+ , 2006, Current Microbiology.

[39]  P. Franzmann,et al.  Moderate thermophiles including “Ferroplasma cupricumulans” sp. nov. dominate an industrial-scale chalcocite heap bioleaching operation , 2006 .

[40]  P. Franzmann,et al.  Ferroplasma cupricumulans sp. nov., a novel moderately thermophilic, acidophilic archaeon isolated from an industrial-scale chalcocite bioleach heap , 2006, Extremophiles.

[41]  T. Tourova,et al.  Sulfobacillus thermotolerans sp. nov., a thermotolerant, chemolithotrophic bacterium. , 2006, International journal of systematic and evolutionary microbiology.

[42]  J. Banfield,et al.  Genome-Directed Isolation of the Key Nitrogen Fixer Leptospirillum ferrodiazotrophum sp. nov. from an Acidophilic Microbial Community , 2005, Applied and Environmental Microbiology.

[43]  T. Kondrat'eva,et al.  Dependence of the Phenotypic Characteristics of Acidithiobacillus ferrooxidans on the Physical, Chemical, and Electrophysical Properties of Pyrites , 2005, Microbiology.

[44]  V. N. Danilevich,et al.  Identification of IS elements in Acidithiobacillus ferrooxidans strains grown in a medium with ferrous iron or adapted to elemental sulfur , 2005, Archives of Microbiology.

[45]  M. A. Egorova,et al.  Reclassification of 'Sulfobacillus thermosulfidooxidans subsp. thermotolerans' strain K1 as Alicyclobacillus tolerans sp. nov. and Sulfobacillus disulfidooxidans Dufresne et al. 1996 as Alicyclobacillus disulfidooxidans comb. nov., and emended description of the genus Alicyclobacillus. , 2005, International journal of systematic and evolutionary microbiology.

[46]  S. Harrison,et al.  Microbial populations of tailings spoil at the São Domingos former copper mine. , 2005 .

[47]  S. Kimura,et al.  Biodiversity of microbial populations in macroscopic “acid streamer” growths at an abandoned pyrite mine, elucidated using a combined cultivation-based and cultivation-independent approaches. , 2005 .

[48]  T. Kondrat'eva,et al.  Dependence of the Genotypic Characteristics of Acidithiobacillus ferrooxidans on the Physical, Chemical, and Electrophysical Properties of Pyrites , 2005, Microbiology.

[49]  V. N. Danilevich,et al.  Interaction of Chromosomal and Plasmid DNA in Acidithiobacillus ferrooxidans Strains Adapted to Different Oxidation Substrates , 2004, Microbiology.

[50]  C. Baker-Austin,et al.  Characterization of Ferroplasma Isolates and Ferroplasma acidarmanus sp. nov., Extreme Acidophiles from Acid Mine Drainage and Industrial Bioleaching Environments , 2004, Applied and Environmental Microbiology.

[51]  T. Kondrat'eva,et al.  Plasmid Profiles of Acidithiobacillus ferrooxidans Strains Adapted to Different Oxidation Substrates , 2003, Microbiology.

[52]  A. Lysenko,et al.  Sulfobacillus sibiricus sp. nov., a New Moderately Thermophilic Bacterium , 2003, Microbiology.

[53]  T. Pivovarova,et al.  Restriction Profiles of the Chromosomal DNA from Acidithiobacillus ferrooxidans Strains Adapted to Different Oxidation Substrates , 2002, Microbiology.

[54]  T. Kondrat'eva,et al.  Phenotypic Characteristics of Thiobacillus ferrooxidansStrains , 2001, Microbiology.

[55]  W. Zillig,et al.  The Sulfolobus-“Caldariella” group: Taxonomy on the basis of the structure of DNA-dependent RNA polymerases , 1980, Archives of Microbiology.

[56]  S. Kimura,et al.  Composition of biofilm communities in acidic mine waters as revealed by combined cultivation and biomolecular approaches. , 2004 .

[57]  Zhipei Liu,et al.  A novel 2-aminophenol 1,6-dioxygenase involved in the degradation of p-chloronitrobenzene by Comamonas strain CNB-1: purification, properties, genetic cloning and expression in Escherichia coli , 2004, Archives of Microbiology.

[58]  W. Zillig,et al.  Isolate B12, which harbours a virus-like element, represents a new species of the archaebacterial genus Sulfolobus, Sulfolobus shibatae, sp. nov. , 2004, Archives of Microbiology.

[59]  T. D. Brock,et al.  Sulfolobus: A new genus of sulfur-oxidizing bacteria living at low pH and high temperature , 2004, Archiv für Mikrobiologie.

[60]  Zheng-guo He,et al.  Acidianus tengchongensis sp. nov., a New Species of Acidothermophilic Archaeon Isolated from an Acidothermal Spring , 2004, Current Microbiology.

[61]  Li Huang,et al.  Sulfolobus tengchongensis sp. nov., a novel thermoacidophilic archaeon isolated from a hot spring in Tengchong, China , 2003, Extremophiles.

[62]  N. Kurosawa,et al.  Reclassification of Sulfolobus hakonensis Takayanagi et al. 1996 as Metallosphaera hakonensis comb. nov. based on phylogenetic evidence and DNA G+C content. , 2003, International journal of systematic and evolutionary microbiology.

[63]  Giovanni Rossi,et al.  Biohydrometallurgy: a sustainable technology in evolution , 2003 .

[64]  T. Kolganova,et al.  Phylogenetic heterogeneity of the species Acidithiobacillus ferrooxidans. , 2003, International journal of systematic and evolutionary microbiology.

[65]  D. Rawlings,et al.  Molecular Relationship between Two Groups of the Genus Leptospirillum and the Finding that Leptospirillum ferriphilum sp. nov. Dominates South African Commercial Biooxidation Tanks That Operate at 40°C , 2002, Applied and Environmental Microbiology.

[66]  Toshio Iwasaki,et al.  Sulfolobus tokodaii sp. nov. (f. Sulfolobus sp. strain 7), a new member of the genus Sulfolobus isolated from Beppu Hot Springs, Japan , 2002, Extremophiles.

[67]  K. Timmis,et al.  Ferroplasma acidiphilum gen. nov., sp. nov., an acidophilic, autotrophic, ferrous-iron-oxidizing, cell-wall-lacking, mesophilic member of the Ferroplasmaceae fam. nov., comprising a distinct lineage of the Archaea. , 2000, International journal of systematic and evolutionary microbiology.

[68]  D. Kelly,et al.  Reclassification of some species of Thiobacillus to the newly designated genera Acidithiobacillus gen. nov., Halothiobacillus gen. nov. and Thermithiobacillus gen. nov. , 2000, International journal of systematic and evolutionary microbiology.

[69]  H. Hippe Leptospirillum gen. nov. (ex Markosyan 1972), nom. rev., including Leptospirillum ferrooxidans sp. nov. (ex Markosyan 1972), nom. rev. and Leptospirillum thermoferrooxidans sp. nov. (Golovacheva et al. 1992). , 2000, International journal of systematic and evolutionary microbiology.

[70]  S. Chaw,et al.  A novel species of thermoacidophilic archaeon, Sulfolobus yangmingensis sp. nov. , 1999, International journal of systematic bacteriology.

[71]  G. Karavaiko,et al.  Strain diversity of Thiobacillus ferrooxidans and its significance in biohydrometallurgy , 1999 .

[72]  T. Pivovarova,et al.  STUDY OF OXIDATION BY BACTERIA OF A DIFFICULT-TO-DRESS GOLD-CONTAINING PYRITE-ARSENOPYRITE CONCENTRATE UNDER MODERATELY THERMOPHILIC CONDITIONS , 1999 .

[73]  T. Pivovarova,et al.  Peculiarities in the chromosomal DNA structure in Sulfobacillus thermosulfidooxidans analyzed by pulsed-field gel electrophoresis , 1998 .

[74]  M. Boissinot,et al.  Sulfobacillus disulfidooxidans sp. nov., a new acidophilic, disulfide-oxidizing, gram-positive, spore-forming bacterium. , 1996, International journal of systematic bacteriology.

[75]  S. Takayanagi,et al.  Sulfolobus hakonensis sp. nov., a novel species of acidothermophilic archaeon. , 1996, International journal of systematic bacteriology.

[76]  P. Norris,et al.  Characteristics of Sulfobacillus acidophilus sp. nov. and other moderately thermophilic mineral-sulphide-oxidizing bacteria. , 1996, Microbiology.

[77]  K. Stetter,et al.  16S rDNA-based Phylogeny of the Archaeal Order Sulfolobales and Reclassification of Desulfurolobus a , 1996 .

[78]  T. Pivovarova,et al.  Peculiarities in the structure of chromosomal DNAs from Thiobacillus ferrooxidans strains adapted to growth on media with pyrite or elemental sulfur , 1996 .

[79]  G. Karavaiko,et al.  Structural changes in the chromosomal DNA of Thiobacillus ferrooxidans cultivated on media with various oxidation substrates , 1996 .

[80]  K. Stetter,et al.  Metallosphaera prunae, sp. nov., a novel metal-mobilizing, thermoacidophilic Archaeum, isolated from a uranium mine in Germany , 1995 .

[81]  K. Hallberg,et al.  Characterization of Thiobacillus caldus sp. nov., a moderately thermophilic acidophile. , 1994, Microbiology.

[82]  E. Stackebrandt,et al.  Cultural and phylogenetic analysis of mixed microbial populations found in natural and commercial bioleaching environments , 1994, Applied and environmental microbiology.

[83]  O. Golyshina,et al.  A NEW IRON-OXIDIZING BACTERIUM, LEPTOSPIRILLUM-THERMOFERROOXIDANS SP-NOV , 1992 .

[84]  K. Stetter,et al.  Sulfolobus metallicus, sp. nov., a novel strictly chemolithoautotrophic thermophilic archaeal species of metal-mobilizers , 1991 .

[85]  S. Eykyn Microbiology , 1950, The Lancet.

[86]  K. Stetter,et al.  Metallosphaera sedula gen, and sp. nov. Represents a New Genus of Aerobic, Metal-Mobilizing, Thermoacidophilic Archaebacteria , 1989 .

[87]  A. Böck,et al.  Desulfurolobus ambivalens, gen. nov., sp. nov., an autotrophic archaebacterium facultatively oxidizing or reducing sulfur , 1986 .

[88]  J. Kristjánsson,et al.  Acidianus infernus gen. nov., sp. nov., and Acidianus brierleyi Comb. nov.: Facultatively Aerobic, Extremely Acidophilic Thermophilic Sulfur-Metabolizing Archaebacteria , 1986 .

[89]  Golovacheva Rs,et al.  [Sulfobacillus, a new genus of thermophilic sporulating bacteria]. , 1978 .

[90]  G. Karavaiko,et al.  [Sulfobacillus, a new genus of thermophilic sporulating bacteria]. , 1978, Mikrobiologiia.

[91]  A R Colmer,et al.  The Role of Microorganisms in Acid Mine Drainage: A Preliminary Report. , 1947, Science.

[92]  S. Waksman,et al.  MICROÖRGANISMS CONCERNED IN THE OXIDATION OF SULFUR IN THE SOIL II. THIOBACILLUS THIOOXIDANS, A NEW SULFUR-OXIDIZING ORGANISM ISOLATED FROM THE SOIL , 1922, Journal of bacteriology.