Rubato DB: A Highly Scalable Staged Grid Database System for OLTP and Big Data Applications

This paper proposes a new formula protocol for distributed concurrency control, and specifies a staged grid architecture for highly scalable database management systems. The paper also describes novel implementation techniques of Rubato DB based on the proposed protocol and architecture. We have conducted extensive experiments which clearly show that Rubato DB is highly scalable with efficient performance under both TPC-C and YCSB benchmarks. Our paper verifies that the formula protocol and the staged grid architecture provide a satisfactory solution to one of the important challenges in the database systems: to develop a highly scalable database management system that supports various consistency levels from ACID to BASE.

[1]  Jingren Zhou,et al.  SCOPE: easy and efficient parallel processing of massive data sets , 2008, Proc. VLDB Endow..

[2]  Dennis Shasha,et al.  Making snapshot isolation serializable , 2005, TODS.

[3]  Michael Stonebraker,et al.  The End of an Architectural Era (It's Time for a Complete Rewrite) , 2007, VLDB.

[4]  Adam Silberstein,et al.  Benchmarking cloud serving systems with YCSB , 2010, SoCC '10.

[5]  Joseph M. Hellerstein,et al.  MAD Skills: New Analysis Practices for Big Data , 2009, Proc. VLDB Endow..

[6]  Yawei Li,et al.  Megastore: Providing Scalable, Highly Available Storage for Interactive Services , 2011, CIDR.

[7]  Hans-Arno Jacobsen,et al.  PNUTS: Yahoo!'s hosted data serving platform , 2008, Proc. VLDB Endow..

[8]  Henry F. Korth,et al.  An Almost-Serial Protocol for Transaction Execution in Main-Memory Database Systems , 2002, VLDB.

[9]  Werner Vogels,et al.  Dynamo: amazon's highly available key-value store , 2007, SOSP.

[10]  Jun Rao,et al.  Using Paxos to Build a Scalable, Consistent, and Highly Available Datastore , 2011, Proc. VLDB Endow..

[11]  Yuan Yu,et al.  Dryad: distributed data-parallel programs from sequential building blocks , 2007, EuroSys '07.

[12]  Madalin Mihailescu,et al.  Exploiting distributed version concurrency in a transactional memory cluster , 2006, PPoPP '06.

[13]  Abraham Silberschatz,et al.  HadoopDB: An Architectural Hybrid of MapReduce and DBMS Technologies for Analytical Workloads , 2009, Proc. VLDB Endow..

[14]  Sanjay Ghemawat,et al.  MapReduce: Simplified Data Processing on Large Clusters , 2004, OSDI.

[15]  Jignesh M. Patel,et al.  High-Performance Concurrency Control Mechanisms for Main-Memory Databases , 2011, Proc. VLDB Endow..

[16]  Brian F. Cooper Spanner: Google's globally-distributed database , 2013, SYSTOR '13.

[17]  Prashant Malik,et al.  Cassandra: a decentralized structured storage system , 2010, OPSR.

[18]  Tim Kraska,et al.  Building a database on S3 , 2008, SIGMOD Conference.

[19]  David E. Culler,et al.  SEDA: an architecture for well-conditioned, scalable internet services , 2001, SOSP.

[20]  Andrey Gubarev,et al.  Dremel : Interactive Analysis of Web-Scale Datasets , 2011 .

[21]  Pete Wyckoff,et al.  Hive - A Warehousing Solution Over a Map-Reduce Framework , 2009, Proc. VLDB Endow..

[22]  Wilson C. Hsieh,et al.  Bigtable: A Distributed Storage System for Structured Data , 2006, TOCS.

[23]  Joseph M. Hellerstein,et al.  Consistency Analysis in Bloom: a CALM and Collected Approach , 2011, CIDR.

[24]  Daniel J. Abadi,et al.  Calvin: fast distributed transactions for partitioned database systems , 2012, SIGMOD Conference.

[25]  Michael Stonebraker,et al.  H-store: a high-performance, distributed main memory transaction processing system , 2008, Proc. VLDB Endow..

[26]  Michael Stonebraker,et al.  10 rules for scalable performance in 'simple operation' datastores , 2011, Commun. ACM.

[27]  Marcos K. Aguilera,et al.  Sinfonia: a new paradigm for building scalable distributed systems , 2007, SOSP.

[28]  Anastasia Ailamaki,et al.  A Case for Staged Database Systems , 2003, CIDR.