In Situ Formation of Tungsten Nitride among Porous Carbon Polyhedra for High Performance Zinc–Iodine Batteries

[1]  S. Jun,et al.  Covalently Interlayer-Confined Organic-Inorganic Heterostructures for Aqueous Potassium Ion Supercapacitors. , 2022, Small.

[2]  Li Wang,et al.  Free‐standing MOF‐derived carbon@carbon cloth for lithium‐iodine batteries via in‐situ carbonization , 2022, ChemElectroChem.

[3]  L. Qu,et al.  A Flexible Aqueous Zinc–Iodine Microbattery with Unprecedented Energy Density , 2022, Advanced materials.

[4]  Wenqing Ma,et al.  ZIF-8 derived porous carbon to mitigate shuttle effect for high performance aqueous zinc-iodine batteries. , 2021, Journal of colloid and interface science.

[5]  T. Ma,et al.  Multifunctional porous carbon strategy assisting high-performance aqueous zinc-iodine battery , 2021, Carbon.

[6]  C. Zhi,et al.  High‐Rate Aqueous Aluminum‐Ion Batteries Enabled by Confined Iodine Conversion Chemistry , 2021, Small methods.

[7]  Yan Yu,et al.  Mo2N–W2N Heterostructures Embedded in Spherical Carbon Superstructure as Highly Efficient Polysulfide Electrocatalysts for Stable Room‐Temperature Na–S Batteries , 2021, Advanced materials.

[8]  S. Jun,et al.  Unlocking the Potential of Oxygen-Deficient Copper-Doped Co3O4 Nanocrystals Confined in Carbon as an Advanced Electrode for Flexible Solid-State Supercapacitors , 2021, ACS Energy Letters.

[9]  S. Ramakrishna,et al.  A symmetric ZnO-ZIF8//Mo-ZIF8 supercapacitor and comparing with electrochemical of Pt, Au, and Cu decorated ZIF-8 electrodes , 2021, Journal of Molecular Liquids.

[10]  Jiang Zhou,et al.  Progress and prospect of the zinc–iodine battery , 2021 .

[11]  Sunghwan Kim,et al.  Oxidative denitrogenation of liquid fuel over W2N@carbon catalyst derived from a phosphotungstinic acid encapsulated metal–azolate framework , 2021 .

[12]  C. Zhi,et al.  Electrocatalytic Iodine Reduction Reaction Enabled by Aqueous Zinc-Iodine Battery with Improved Power and Energy Densities. , 2020, Angewandte Chemie.

[13]  Jun Deng,et al.  The efficient redox electron transfer and powered polysulfide confinement of carbon doped tungsten nitride with multi-active sites towards high-performance lithium-polysulfide batteries , 2020 .

[14]  M. Sillanpää,et al.  UV-switchable phosphotungstic acid sandwiched between ZIF-8 and Au nanoparticles to improve simultaneous adsorption and UV light photocatalysis toward tetracycline degradation , 2020 .

[15]  P. He,et al.  A Metal–Organic Framework as a Multifunctional Ionic Sieve Membrane for Long‐Life Aqueous Zinc–Iodide Batteries , 2020, Advanced materials.

[16]  Anuj Kumar,et al.  High-Voltage and Ultrastable Aqueous Zinc–Iodine Battery Enabled by N-Doped Carbon Materials: Revealing the Contributions of Nitrogen Configurations , 2020 .

[17]  S. Jun,et al.  Structural engineering and surface modification of MOF-derived cobalt-based hybrid nanosheets for flexible solid-state supercapacitors , 2020 .

[18]  F. Kang,et al.  Theoretical Investigation of the Electrochemical Performance of Transition Metal Nitrides for Lithium–Sulfur Batteries , 2019, The Journal of Physical Chemistry C.

[19]  Yongsong Luo,et al.  Tungsten Nitride/Carbon Cloth as Bifunctional Electrode for Effective Polysulfide Recycling , 2019, ACS Applied Energy Materials.

[20]  Song Chen,et al.  Bifunctional Oxygen Electrocatalysis of N, S-Codoped Porous Carbon with Interspersed Hollow CoO Nanoparticles for Rechargeable Zn-Air Batteries. , 2019, ACS applied materials & interfaces.

[21]  Bing Sun,et al.  Ultra-stable sodium metal-iodine batteries enabled by an in-situ solid electrolyte interphase , 2019, Nano Energy.

[22]  Yan Yu,et al.  Ultrathin Ti2Nb2O9 Nanosheets with Pseudocapacitive Properties as Superior Anode for Sodium‐Ion Batteries , 2018, Advanced materials.

[23]  Zhihao Yuan,et al.  A sustainable aqueous Zn-I2 battery , 2018, Nano Research.

[24]  Zongping Shao,et al.  Rationally Designed Hierarchically Structured Tungsten Nitride and Nitrogen‐Rich Graphene‐Like Carbon Nanocomposite as Efficient Hydrogen Evolution Electrocatalyst , 2017, Advanced science.

[25]  L. Dai,et al.  A rechargeable iodine-carbon battery that exploits ion intercalation and iodine redox chemistry , 2017, Nature Communications.

[26]  Junhua Song,et al.  Metal‐Organic Framework‐Derived Non‐Precious Metal Nanocatalysts for Oxygen Reduction Reaction , 2017 .

[27]  V. G. Anju,et al.  Work Function Tunable Titanium Carbonitride Nanostructures for High‐Efficiency, Rechargeable Li–Iodine Batteries , 2017 .

[28]  Yan Yu,et al.  Confined Amorphous Red Phosphorus in MOF‐Derived N‐Doped Microporous Carbon as a Superior Anode for Sodium‐Ion Battery , 2017, Advanced materials.

[29]  C. Lamberti,et al.  H2S interaction with HKUST-1 and ZIF-8 MOFs: A multitechnique study , 2015 .

[30]  Tong Zhang,et al.  Core–shell Pd/ZSM-5@ZIF-8 membrane micro-reactors with size selectivity properties for alkene hydrogenation , 2014 .

[31]  Huanting Wang,et al.  Facile synthesis of zeolitic imidazolate framework-8 from a concentrated aqueous solution , 2014 .

[32]  V. Bansal,et al.  UV-switchable polyoxometalate sandwiched between TiO2 and metal nanoparticles for enhanced visible and solar light photococatalysis. , 2011, Langmuir : the ACS journal of surfaces and colloids.

[33]  D. Sebastián,et al.  The effect of the functionalization of carbon nanofibers on their electronic conductivity , 2010 .

[34]  S. B. Halligudi,et al.  Tungstophosphoric acid supported on titania: A solid acid catalyst in benzylation of phenol with benzylalcohol , 2007 .

[35]  M. Sastry,et al.  Synthesis and Assembly of Gold Nanoparticles in Quasi‐Linear Lysine–Keggin‐Ion Colloidal Particles , 2005 .

[36]  Ralph G. Pearson,et al.  HARD AND SOFT ACIDS AND BASES , 1963 .

[37]  Qianwang Chen,et al.  Uniform Zinc Electrodeposition Directed by Interfacial Cation Reservoir for Stable Zn-I 2 Battery , 2021, SSRN Electronic Journal.

[38]  S. Ye,et al.  LiI embedded meso-micro porous carbon polyhedrons for lithium iodine battery with superior lithium storage properties , 2018 .