Silica formation in diatoms: the function of long-chain polyamines and silaffins

The stunning silica structures formed by diatoms are among the most remarkable examples of biological nanofabrication. In recent years, insight into the molecules and mechanism that allow diatoms to perform silica morphogenesis under ambient conditions has been gained.

[1]  M. Brzezinski,et al.  THE CHEMICAL FORM OF DISSOLVED SI TAKEN UP BY MARINE DIATOMS , 1999 .

[2]  N. Kröger,et al.  Pleuralins are involved in theca differentiation in the diatom Cylindrotheca fusiformis. , 2000, Protist.

[3]  A. Samuels,et al.  Silicon in cell walls and papillae of Cucumis sativus during infection by Sphaerotheca fuliginea , 1994 .

[4]  B. Volcani,et al.  3,4-Dihydroxyproline: A New Amino Acid in Diatom Cell Walls , 1969, Science.

[5]  W. Stöber,et al.  Controlled growth of monodisperse silica spheres in the micron size range , 1968 .

[6]  K. V. van Bommel,et al.  Organic templates for the generation of inorganic materials. , 2003, Angewandte Chemie.

[7]  Mark E. Davis Ordered porous materials for emerging applications , 2002, Nature.

[8]  B. Volcani,et al.  Silicon and Siliceous Structures in Biological Systems , 1981, Springer New York.

[9]  M. Sumper,et al.  Biomimetic synthesis of silica nanospheres depends on the aggregation and phase separation of polyamines in aqueous solution , 2004 .

[10]  M. Sumper,et al.  A Phase Separation Model for the Nanopatterning of Diatom Biosilica , 2002, Science.

[11]  S. Lorenz,et al.  Self-Assembly of Highly Phosphorylated Silaffins and Their Function in Biosilica Morphogenesis , 2002, Science.

[12]  B. Volcani,et al.  Aspects of Silicification in Wall Morphogenesis of Diatoms , 1984 .

[13]  Paul Mulvaney,et al.  NANOSTRUCTURE OF THE DIATOM FRUSTULE AS REVEALED BY ATOMIC FORCE AND SCANNING ELECTRON MICROSCOPY , 2001 .

[14]  N. Kröger,et al.  Polycationic peptides from diatom biosilica that direct silica nanosphere formation. , 1999, Science.

[15]  H. Ogoshi,et al.  Silicic Acid Polymerization Catalyzed by Amines and Polyamines , 1998 .

[16]  R. Gordon,et al.  Beyond micromachining: the potential of diatoms. , 1999, Trends in biotechnology.

[17]  R. Hecky,et al.  The amino acid and sugar composition of diatom cell-walls , 1973 .

[18]  A. Schmid,et al.  Wall morphogenesis in diatoms: Deposition of silica by cytoplasmic vesicles , 1979, Protoplasma.

[19]  E. G. Vrieling,et al.  SILICON DEPOSITION IN DIATOMS: CONTROL BY THE pH INSIDE THE SILICON DEPOSITION VESICLE , 1999 .

[20]  N. Kröger,et al.  A new calcium binding glycoprotein family constitutes a major diatom cell wall component. , 1994, The EMBO journal.

[21]  H. Pankratz,et al.  POST MITOTIC FINE STRUCTURE OF GOMPHONEMA PARVULUM. , 1964, Journal of ultrastructure research.

[22]  N. Kröger,et al.  Species-specific polyamines from diatoms control silica morphology. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[23]  S. J. Clarson,et al.  Silicification and Biosilicification. Part 4. Effect of Template Size on the Formation of Silica , 2002 .

[24]  M. Hildebrand,et al.  Characterization of a silicon transporter gene family in Cylindrotheca fusiformis: sequences, expression analysis, and identification of homologs in other diatoms , 1998, Molecular and General Genetics MGG.

[25]  David W. Tomlin,et al.  Ultrafast holographic nanopatterning of biocatalytically formed silica , 2001, Nature.

[26]  Lesile Glasser The chemistry of silica: By Ralph K. Iller. Pp. vii+ 866. Wiley, Chichester. 1979, £39.50 , 1980 .

[27]  S. Mann,et al.  The Chemistry of Form. , 2000, Angewandte Chemie.

[28]  G. Garzo,et al.  Über die Silicatanionenkonstitution in Tetraethylammoniumsilicaten und ihren wäßrigen Lösungen , 1980 .

[29]  N. Hampp,et al.  Nanostructure of Diatom Silica Surfaces and of Biomimetic Analogues , 2002 .

[30]  A. P. Wheeler,et al.  EVIDENCE OF AN ORGANIC MATRIX FROM DIATOM BIOSILICA 1 , 1992 .

[31]  R. Naik,et al.  Controlled formation of biosilica structures in vitro. , 2003, Chemical communications.

[32]  Mark Hildebrand,et al.  A gene family of silicon transporters , 1997, Nature.

[33]  S. Lorenz,et al.  Biomimetic control of size in the polyamine-directed formation of silica nanospheres. , 2003, Angewandte Chemie.

[34]  Rajesh R Naik,et al.  Enzyme immobilization in a biomimetic silica support , 2004, Nature Biotechnology.

[35]  Stephen Mann,et al.  Synthesis of inorganic materials with complex form , 1996, Nature.

[36]  R. Rachel,et al.  Characterization of a 200-kDa diatom protein that is specifically associated with a silica-based substructure of the cell wall. , 1997, European journal of biochemistry.

[37]  Engel G. Vrieling,et al.  LOCATION AND EXPRESSION OF FRUSTULINS IN THE PENNATE DIATOMS CYLINDROTHECA FUSIFORMIS, NAVICULA PELLICULOSA, AND NAVICULA SALINARUM (BACILLARIOPHYCEAE) , 1999 .

[38]  R. M. Barrer,et al.  201. Hydrothermal chemistry of the silicates. Part IX. Nitrogenous aluminosilicates , 1961 .

[39]  B. Volcani,et al.  Studies on the biochemistry and fine structure of silicia shell formation in diatoms VII. Sequential cell wall development in the pennateNavicula pelliculosa , 1977, Protoplasma.

[40]  K Schwarz,et al.  A bound form of silicon in glycosaminoglycans and polyuronides. , 1973, Proceedings of the National Academy of Sciences of the United States of America.

[41]  Mark Hildebrand,et al.  SILICON METABOLISM IN DIATOMS: IMPLICATIONS FOR GROWTH  , 2000 .

[42]  D. M. Nelson,et al.  The Silica Balance in the World Ocean: A Reestimate , 1995, Science.

[43]  S. J. Clarson,et al.  Bioinspired synthesis of new silica structures. , 2003, Chemical communications.

[44]  Nicole Poulsen,et al.  Biosilica formation in diatoms: Characterization of native silaffin-2 and its role in silica morphogenesis , 2003, Proceedings of the National Academy of Sciences of the United States of America.