Spatial and Temporal Distribution of Black Carbon in Peru from the Analysis of Biomass Burning Sources and the Use of Numerical Models

[1]  C. Carrión,et al.  MULTI-TEMPORAL ANALYSIS OF THE GLACIER RETREAT USING LANDSAT SATELLITE IMAGES IN THE NEVADO OF THE AMPAY NATIONAL SANCTUARY- PERU , 2021, Journal of Sustainable Development of Energy, Water and Environment Systems.

[2]  Y. Silva,et al.  First two and a half years of aerosol measurements with an AERONET sunphotometer at the Huancayo Observatory, Peru , 2019, Atmospheric Environment: X.

[3]  Shailendra Kumar,et al.  Response of the WRF model to different resolutions in the rainfall forecast over the complex Peruvian orography , 2019, Theoretical and Applied Climatology.

[4]  C. Schmitt,et al.  Measurement of light absorbing particles in the snow of the Huaytapallana glacier in the central Andes of Peru and their effect on albedo and radiative forcing , 2018, Óptica Pura y Aplicada.

[5]  I. Y. Platero,et al.  Determining the desert dust aerosol presence in the Mantaro Valley, Peru , 2018, Optica Pura y Aplicada.

[6]  Shailendra Kumar,et al.  Extreme Rainfall Forecast with the WRF-ARW Model in the Central Andes of Peru , 2018, Atmosphere.

[7]  J. Flores,et al.  Sensitivity Study on the Influence of Parameterization Schemes in WRF_ARW Model on Short- and Medium-Range Precipitation Forecasts in the Central Andes of Peru , 2018 .

[8]  Sandra de Souza Hacon,et al.  Biomass burning in the Amazon region causes DNA damage and cell death in human lung cells , 2017, Scientific Reports.

[9]  A. Álvarez,et al.  DETERMINACIÓN DE LA PRESENCIA DE PARTÍCULAS (PM10) EN PERÚ PRODUCIDAS POR QUEMA DE BIOMASA CON AYUDA DE MODELOS NUMÉRICOS , 2017 .

[10]  G. Raga,et al.  Pollution and its Impacts on the South American Cryosphere , 2015 .

[11]  Dennis P. Lettenmaier,et al.  Predicting glacio‐hydrologic change in the headwaters of the Zongo River, Cordillera Real, Bolivia , 2015 .

[12]  H. Morrison,et al.  Parameterization of Cloud Microphysics Based on the Prediction of Bulk Ice Particle Properties. Part I: Scheme Description and Idealized Tests , 2015 .

[13]  W. P. Arnott,et al.  Measurements of light-absorbing particles on the glaciers in the Cordillera Blanca, Peru , 2014 .

[14]  Y. Arnaud,et al.  A 10 year record of black carbon and dust from a Mera Peak ice core (Nepal): variability and potential impact on melting of Himalayan glaciers , 2014 .

[15]  Ian Baker,et al.  Climate change and forest fires synergistically drive widespread melt events of the Greenland Ice Sheet , 2014, Proceedings of the National Academy of Sciences.

[16]  Paulo Artaxo,et al.  Atmospheric aerosols in Amazonia and land use change: from natural biogenic to biomass burning conditions. , 2013, Faraday discussions.

[17]  S. Freitas,et al.  A scale and aerosol aware stochastic convective parameterization for weather and air quality modeling , 2013 .

[18]  Manuel Collet,et al.  Current state of glaciers in the tropical Andes: a multi-century perspective on glacier evolution and climate change , 2013 .

[19]  Nicholas Z. Muller,et al.  Global Air Quality and Health Co-benefits of Mitigating Near-Term Climate Change through Methane and Black Carbon Emission Controls , 2012, Environmental health perspectives.

[20]  C. Jang,et al.  Impacts of global, regional, and sectoral black carbon emission reductions on surface air quality and human mortality , 2011 .

[21]  B. Soares-Filho,et al.  Impacts of Climate Change and the End of Deforestation on Land Use in the Brazilian Legal Amazon , 2011 .

[22]  David S. Lee,et al.  Transport impacts on atmosphere and climate: Metrics , 2010 .

[23]  S. K. Akagi,et al.  Emission factors for open and domestic biomass burning for use in atmospheric models , 2010 .

[24]  U. Pöschl,et al.  Rainforest Aerosols as Biogenic Nuclei of Clouds and Precipitation in the Amazon , 2010, Science.

[25]  Xiang Qin,et al.  Black Carbon (BC) in the snow of glaciers in west China and its potential effects on albedos , 2009 .

[26]  B. Francou,et al.  Glacier decline between 1963 and 2006 in the Cordillera Real, Bolivia , 2009 .

[27]  Steven J. Ghan,et al.  Coupling aerosol-cloud-radiative processes in the WRF-Chem model: Investigating the radiative impact of elevated point sources , 2008 .

[28]  W. Collins,et al.  Radiative forcing by long‐lived greenhouse gases: Calculations with the AER radiative transfer models , 2008 .

[29]  Jean-Francois Lamarque,et al.  Multimodel projections of climate change from short‐lived emissions due to human activities , 2008 .

[30]  V. Ramanathan,et al.  Global and regional climate changes due to black carbon , 2008 .

[31]  J. Kahl,et al.  20th-Century Industrial Black Carbon Emissions Altered Arctic Climate Forcing , 2007, Science.

[32]  M. Andreae Aerosols Before Pollution , 2007, Science.

[33]  Philip J. Rasch,et al.  Present-day climate forcing and response from black carbon in snow , 2006 .

[34]  G. Grell,et al.  Evolution of ozone, particulates, and aerosol direct radiative forcing in the vicinity of Houston using a fully coupled meteorology‐chemistry‐aerosol model , 2006 .

[35]  J. Dudhia,et al.  A New Vertical Diffusion Package with an Explicit Treatment of Entrainment Processes , 2006 .

[36]  M. Deeter,et al.  Satellite-observed pollution from Southern Hemisphere biomass burning. , 2006 .

[37]  D. Nepstad,et al.  Forest Understory Fire in the Brazilian Amazon in ENSO and Non-ENSO Years: Area Burned and Committed Carbon Emissions , 2006 .

[38]  Georg A. Grell,et al.  Fully coupled “online” chemistry within the WRF model , 2005 .

[39]  V. Kirchhoff,et al.  Surface ozone enhancements in the south of Brazil owing to large-scale air mass transport , 2005 .

[40]  M. Andreae,et al.  Smoking Rain Clouds over the Amazon , 2004, Science.

[41]  M. Andreae,et al.  Emission of trace gases and aerosols from biomass burning , 2001 .

[42]  E. Mlawer,et al.  Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave , 1997 .

[43]  D. Blake,et al.  Biomass burning emissions and vertical distribution of atmospheric methyl halides and other reduced carbon gases in the South Atlantic region , 1996 .

[44]  H. Horvath Atmospheric light absorption : a review , 1993 .

[45]  Da‐Lin Zhang,et al.  A High-Resolution Model of the Planetary Boundary Layer—Sensitivity Tests and Comparisons with SESAME-79 Data , 1982 .

[46]  C. Paulson The Mathematical Representation of Wind Speed and Temperature Profiles in the Unstable Atmospheric Surface Layer , 1970 .

[47]  B. Hicks,et al.  Flux‐gradient relationships in the constant flux layer , 1970 .

[48]  A. Luna,et al.  Influence evaluation of PM10 produced by the burning of biomass in Peru on AOD, using the WRF-Chem , 2020 .

[49]  Wouter Buytaert,et al.  Rapid decline of snow and ice in the tropical Andes – Impacts, uncertainties and challenges ahead , 2018 .

[50]  J. All,et al.  Linking remote and in-situ detection of black carbon on tropical glaciers , 2014 .

[51]  Bernard Pinty,et al.  National Center for Atmospheric Research, Boulder, Colorado , 1990 .

[52]  E. K. Webb Profile relationships: The log‐linear range, and extension to strong stability , 1970 .