A mesoscopic bridging scale method for fluids and coupling dissipative particle dynamics with continuum finite element method.

A multiscale procedure to couple a mesoscale discrete particle model and a macroscale continuum model of incompressible fluid flow is proposed in this study. We call this procedure the mesoscopic bridging scale (MBS) method since it is developed on the basis of the bridging scale method for coupling molecular dynamics and finite element models [G.J. Wagner, W.K. Liu, Coupling of atomistic and continuum simulations using a bridging scale decomposition, J. Comput. Phys. 190 (2003) 249-274]. We derive the governing equations of the MBS method and show that the differential equations of motion of the mesoscale discrete particle model and finite element (FE) model are only coupled through the force terms. Based on this coupling, we express the finite element equations which rely on the Navier-Stokes and continuity equations, in a way that the internal nodal FE forces are evaluated using viscous stresses from the mesoscale model. The dissipative particle dynamics (DPD) method for the discrete particle mesoscale model is employed. The entire fluid domain is divided into a local domain and a global domain. Fluid flow in the local domain is modeled with both DPD and FE method, while fluid flow in the global domain is modeled by the FE method only. The MBS method is suitable for modeling complex (colloidal) fluid flows, where continuum methods are sufficiently accurate only in the large fluid domain, while small, local regions of particular interest require detailed modeling by mesoscopic discrete particles. Solved examples - simple Poiseuille and driven cavity flows illustrate the applicability of the proposed MBS method.

[1]  Piet D. Iedema,et al.  Modelling multi-viscosity systems with dissipative particle dynamics , 2006, J. Comput. Phys..

[2]  Piet D. Iedema,et al.  No-Slip Boundary Condition In Dissipative Particle Dynamics , 2000 .

[3]  Pep Español,et al.  INSTITUTE OF PHYSICS PUBLISHING JOURNAL OF PHYSICS A: MATHEMATICAL AND GENERAL J. Phys. A: Math. Gen. 35 (2002) 1605–1625 PII: S0305-4470(02)28700-4 , 2022 .

[4]  Karttunen,et al.  Towards better integrators for dissipative particle dynamics simulations , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[5]  Eduard G. Karpov,et al.  Molecular dynamics boundary conditions for regular crystal lattices , 2004 .

[6]  W. Cai,et al.  Minimizing boundary reflections in coupled-domain simulations. , 2000, Physical review letters.

[7]  Español,et al.  Hydrodynamics from dissipative particle dynamics. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[8]  Pep Español,et al.  Large scale and mesoscopic hydrodynamics for dissipative particle dynamics , 2001 .

[9]  K. Bathe Finite Element Procedures , 1995 .

[10]  J. Koelman,et al.  Simulating microscopic hydrodynamic phenomena with dissipative particle dynamics , 1992 .

[11]  Flekkoy,et al.  Foundations of dissipative particle dynamics , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[12]  Witold Dzwinel,et al.  A discrete-particle model of blood dynamics in capillary vessels. , 2003, Journal of colloid and interface science.

[13]  Ole G Mouritsen,et al.  Artifacts in dynamical simulations of coarse-grained model lipid bilayers. , 2005, The Journal of chemical physics.

[14]  P. Español,et al.  Statistical Mechanics of Dissipative Particle Dynamics. , 1995 .

[15]  David Farrell,et al.  Immersed finite element method and its applications to biological systems. , 2006, Computer methods in applied mechanics and engineering.

[16]  Harold S. Park,et al.  Three-dimensional bridging scale analysis of dynamic fracture , 2005 .

[17]  M Levitt,et al.  Simulating water and the molecules of life. , 1998, Scientific American.

[18]  Ilpo Vattulainen,et al.  Integration schemes for dissipative particle dynamics simulations: From softly interacting systems towards hybrid models , 2002, cond-mat/0211332.

[19]  O. Diekmann,et al.  Comment on "Linking population-level models with growing networks: a class of epidemic models". , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[20]  Gregory J. Wagner,et al.  Coupling of atomistic and continuum simulations using a bridging scale decomposition , 2003 .

[21]  Nhan Phan-Thien,et al.  Microchannel flow of a macromolecular suspension , 2003 .

[22]  Ronald E. Miller,et al.  Atomistic/continuum coupling in computational materials science , 2003 .

[23]  P. Español,et al.  FLUID PARTICLE MODEL , 1998 .

[24]  J. Monaghan Smoothed particle hydrodynamics , 2005 .

[25]  K. Bathe,et al.  Inelastic Analysis of Solids and Structures , 2004 .

[26]  N. Filipovic,et al.  Interactions of blood cell constituents: experimental investigation and computational modeling by discrete particle dynamics algorithm. , 2008, Microvascular research.

[27]  Lucy T. Zhang,et al.  Immersed finite element method , 2004 .

[28]  Pep Español,et al.  Coarse-Graining of a Fluid and its Relation with Dissipative Particle Dynamics and Smoothed Particle Dynamic , 1997 .

[29]  Pep Español,et al.  Boundary Models in DPD , 1998 .

[30]  P. Español Coarse graining from coarse-grained descriptions , 2002, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[31]  Dynamical regimes in the dissipative particle dynamics model. , 1999, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[32]  Peter V. Coveney,et al.  From Molecular Dynamics to Dissipative Particle Dynamics , 1999 .

[33]  P. B. Warren,et al.  DISSIPATIVE PARTICLE DYNAMICS : BRIDGING THE GAP BETWEEN ATOMISTIC AND MESOSCOPIC SIMULATION , 1997 .

[34]  Eduard G. Karpov,et al.  A Green's function approach to deriving non‐reflecting boundary conditions in molecular dynamics simulations , 2005 .

[35]  Dissipative particle dynamics simulation of flow generated by two rotating concentric cylinders: boundary conditions. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[36]  P. Español,et al.  Dissipative particle dynamics with energy conservation , 1997 .

[37]  Nenad Filipovic,et al.  Modeling of microcirculation and thrombosis by Dissipative Particle Dynamics (DPD) , 2006 .

[38]  Nenad Filipovic,et al.  Multiscale modeling of blood flow: coupling of dissipative particle method and finite element method* , 2006 .

[39]  Hiroshi Kadowaki,et al.  Bridging multi-scale method for localization problems , 2004 .

[40]  J. Ávalos,et al.  Dissipative particle dynamics with energy conservation , 1997, cond-mat/9706217.

[41]  Harold S. Park,et al.  The bridging scale for two-dimensional atomistic/continuum coupling , 2005 .

[42]  Peter V. Coveney,et al.  Using Dissipative Particle Dynamics to Model Binary Immiscible Fluids , 1997 .

[43]  Milos Kojic,et al.  Computer simulations of blood flow with mass transport through the carotid artery bifurcation , 2004 .

[44]  G. Karniadakis,et al.  A new method to impose no-slip boundary conditions in dissipative particle dynamics , 2005 .

[45]  Pep Español,et al.  Dissipative particle dynamics for interacting multicomponent systems , 1997 .

[46]  N. Filipovic,et al.  An implicit algorithm within the arbitrary Lagrangian–Eulerian formulation for solving incompressible fluid flow with large boundary motions , 2006 .

[47]  Witold Dzwinel,et al.  Dynamical clustering of red blood cells in capillary vessels , 2003, Journal of molecular modeling.

[48]  Thomas Y. Hou,et al.  A mathematical framework of the bridging scale method , 2006 .

[49]  E. Weinan,et al.  Heterogeneous multiscale method for the modeling of complex fluids and micro-fluidics , 2005 .

[50]  Harold S. Park,et al.  A temperature equation for coupled atomistic/continuum simulations , 2004 .

[51]  Harold S. Park,et al.  An introduction to computational nanomechanics and materials , 2004 .

[52]  K. Huebner The finite element method for engineers , 1975 .

[53]  Gregory J. Wagner,et al.  A multiscale projection method for the analysis of carbon nanotubes , 2004 .

[54]  Nhan Phan-Thien,et al.  An implementation of no-slip boundary conditions in DPD , 2004 .

[55]  Pep Español,et al.  Smoothed dissipative particle dynamics. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[56]  Sauro Succi,et al.  Multiscale lattice Boltzmann schemes with turbulence modeling , 2001 .