Limited-memory trust-region methods for sparse relaxation

In this paper, we solve the ℓ2-ℓ1 sparse recovery problem by transforming the objective function of this problem into an unconstrained differentiable function and applying a limited-memory trust-region method. Unlike gradient projection-type methods, which uses only the current gradient, our approach uses gradients from previous iterations to obtain a more accurate Hessian approximation. Numerical experiments show that our proposed approach eliminates spurious solutions more effectively while improving computational time.

[1]  Wei Dai,et al.  Low rank matrix completion: A smoothed l0-search , 2012, 2012 50th Annual Allerton Conference on Communication, Control, and Computing (Allerton).

[2]  M. Powell CONVERGENCE PROPERTIES OF A CLASS OF MINIMIZATION ALGORITHMS , 1975 .

[3]  Roummel F. Marcia,et al.  Algorithm 943 , 2014 .

[4]  Mário A. T. Figueiredo,et al.  Gradient Projection for Sparse Reconstruction: Application to Compressed Sensing and Other Inverse Problems , 2007, IEEE Journal of Selected Topics in Signal Processing.

[5]  David M. author-Gay Computing Optimal Locally Constrained Steps , 1981 .

[6]  XU JAMESV.BURKEANDREASWIEGMANNLIANG LIMITED MEMORY BFGS UPDATING IN A TRUST – REGION FRAMEWORK , 1996 .

[7]  Junfeng Yang,et al.  Alternating Direction Algorithms for 1-Problems in Compressive Sensing , 2009, SIAM J. Sci. Comput..

[8]  Jorge J. Moré,et al.  Computing a Trust Region Step , 1983 .

[9]  Mohamed-Jalal Fadili,et al.  A quasi-Newton proximal splitting method , 2012, NIPS.

[10]  Jorge Nocedal,et al.  Representations of quasi-Newton matrices and their use in limited memory methods , 1994, Math. Program..

[11]  Yuqing Hou,et al.  Gradient Projection for Sparse Reconstruction Method for Dynamic Fluorescence Molecular Tomography , 2019, ICIG.

[12]  Michael A. Saunders,et al.  Proximal Newton-type methods for convex optimization , 2012, NIPS.

[13]  Trust-Region Regularization,et al.  Nonconvex TV q -Models in Image Restoration: Analysis and a , 2011 .

[14]  Jorge Nocedal,et al.  On the limited memory BFGS method for large scale optimization , 1989, Math. Program..

[15]  Gitta Kutyniok,et al.  1 . 2 Sparsity : A Reasonable Assumption ? , 2012 .

[16]  Jingjie Cao,et al.  Recovery of seismic wavefields based on compressive sensing by an l1-norm constrained trust region method and the piecewise random subsampling , 2011, Geophysical Journal International.

[17]  S. V. N. Vishwanathan,et al.  A Quasi-Newton Approach to Nonsmooth Convex Optimization Problems in Machine Learning , 2008, J. Mach. Learn. Res..

[18]  Ya-Xiang Yuan,et al.  On efficiently combining limited-memory and trust-region techniques , 2017, Math. Program. Comput..