A proof of Price's Law on Schwarzschild black hole manifolds for all angular momenta
暂无分享,去创建一个
[1] M. Tohaneanu,et al. Strichartz Estimates on Schwarzschild Black Hole Backgrounds , 2008, 0802.3942.
[2] M. Tohaneanu,et al. A Local Energy Estimate on Kerr Black Hole Backgrounds , 2008, 0810.5766.
[3] J. Luk. Improved Decay for Solutions to the Linear Wave Equation on a Schwarzschild Black Hole , 2009, 0906.5588.
[4] C. Misner,et al. STABILITY OF THE SCHWARZSCHILD METRIC. , 1970 .
[5] Thibault Damour,et al. Improved analytical description of inspiralling and coalescing black-hole binaries , 2009, 0902.0136.
[6] F. Zerilli,et al. Effective potential for even parity Regge-Wheeler gravitational perturbation equations , 1970 .
[7] Richard H. Price,et al. Nonspherical perturbations of relativistic gravitational collapse , 1971 .
[8] News from critical collapse: Bondi mass, tails, and quasinormal modes , 2004, gr-qc/0411078.
[9] T. Damour,et al. Accurate effective-one-body waveforms of inspiralling and coalescing black-hole binaries , 2008, 0803.3162.
[10] S. Yau,et al. Decay of Solutions of the Wave Equation in the Kerr Geometry , 2008 .
[11] Mihalis Dafermos,et al. The Red-shift effect and radiation decay on black hole spacetimes , 2005 .
[12] Amos Ori,et al. Late-time decay of scalar perturbations outside rotating black holes , 1999 .
[13] A. Soffer,et al. A Space–Time Integral Estimate For A Large Data Semi-linear Wave Equation on the Schwarzschild Manifold , 2007, math/0703399.
[14] R. Price,et al. Nonspherical Perturbations of Relativistic Gravitational Collapse. I. Scalar and Gravitational Perturbations , 1972 .
[15] John Archibald Wheeler,et al. Stability of a Schwarzschild singularity , 1957 .
[16] M. Abramowitz,et al. Handbook of Mathematical Functions With Formulas, Graphs and Mathematical Tables (National Bureau of Standards Applied Mathematics Series No. 55) , 1965 .
[17] Radiative falloff of a scalar field in a weakly curved spacetime without symmetries , 2002, gr-qc/0205018.
[18] S. Zając,et al. Late-time tails of wave maps coupled to gravity , 2009, 0906.2919.
[19] W. Schlag,et al. Decay Estimates for the One-dimensional Wave Equation with an Inverse Power Potential , 2009, 0911.3174.
[20] W. Schlag,et al. Decay for the wave and Schrödinger evolutions on manifolds with conical ends, Part II , 2008, 0801.1999.
[21] G. Matsas,et al. Can quantum mechanics fool the cosmic censor , 2009, 0905.1077.
[22] Steven Roman. The Formula of FAA Di Bruno , 1980 .
[23] Global Existence for the Einstein Vacuum Equations in Wave Coordinates , 2003, math/0312479.
[24] D. Tataru,et al. Decay estimates for variable coefficient wave equations in exterior domains , 2008, 0806.3409.
[25] S. Klainerman,et al. The Global Nonlinear Stability of the Minkowski Space. , 1994 .
[26] A proof of Price’s law for the collapse of a self-gravitating scalar field , 2003, gr-qc/0309115.
[27] Subrahmanyan Chandrasekhar,et al. The Mathematical Theory of Black Holes , 1983 .
[28] Gerald Teschl,et al. Mathematical Methods in Quantum Mechanics , 2009 .
[29] S. Hod. How pure is the tail of gravitational collapse? , 2009, 0902.0237.
[30] T. Damour,et al. Comparing effective-one-body gravitational waveforms to accurate numerical data , 2007, 0711.2628.
[31] A Rigorous Treatment of Energy Extraction from a Rotating Black Hole , 2007, gr-qc/0701018.
[32] Petr Hořava. Quantum Gravity at a Lifshitz Point , 2009, 0901.3775.
[33] R. Wald,et al. Point Charge in the Vicinity of a Schwarzschild Black Hole , 1971 .
[34] Johann Kronthaler. Decay rates for spherical scalar waves in the Schwarzschild geometry , 2007, 0709.3703.
[35] D. Tataru. Local decay of waves on asymptotically flat stationary space-times , 2009, 0910.5290.
[36] W. Schlag. Dispersive Estimates for Schr¨odinger Operators: a Survey , 2005 .
[37] S. Yau,et al. Linear waves in the Kerr geometry: A mathematical voyage to black hole physics , 2008, 0801.1423.
[38] T. Damour,et al. Faithful Effective-One-Body waveforms of equal-mass coalescing black-hole binaries , 2007, 0712.3003.
[39] A. Soffer,et al. Phase Space Analysis on some Black Hole Manifolds , 2005, math/0511281.
[40] T. Chmaj,et al. Late-time tails of a Yang–Mills field on Minkowski and Schwarzschild backgrounds , 2007, 0704.0993.
[41] R. Wald,et al. Linear stability of Schwarzschild under perturbations which are non-vanishing on the bifurcation 2-sphere , 1987 .
[42] M. Pürrer,et al. Tails for the Einstein–Yang–Mills system , 2008, 0810.2648.
[43] I. Rodnianski,et al. A note on energy currents and decay for the wave equation on a Schwarzschild background , 2007, 0710.0171.
[44] Gaurav Khanna,et al. Late-time Kerr tails revisited , 2007, 0711.0960.
[45] W. D. Evans,et al. PARTIAL DIFFERENTIAL EQUATIONS , 1941 .
[46] Decay for the wave and Schrödinger evolutions on manifolds with conical ends, Part II , 2009 .
[47] L. Burko,et al. Late-time tails in the Reissner-Nordström spacetime revisited , 2007 .
[48] I. Rodnianski,et al. Lectures on black holes and linear waves , 2008, 0811.0354.
[49] R. Wald. Note on the stability of the Schwarzschild metric , 1979 .
[50] S. Tanveer,et al. Semiclassical analysis of low and zero energy scattering for one dimensional Schr , 2008, 0804.2282.
[51] Jean Bourgain,et al. Mathematical aspects of nonlinear dispersive equations , 2007 .
[52] S. Chandrasekhar. On the equations governing the perturbations of the Schwarzschild black hole , 1975, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.
[53] Milton Abramowitz,et al. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables , 1964 .
[54] D. Tataru,et al. Global parametrices and dispersive estimates for variable coefficient wave equations , 2007, 0707.1191.
[55] P. Aichelburg,et al. Bifurcation and fine structure phenomena in critical collapse of a self-gravitating σ-field , 2005, gr-qc/0512136.
[56] R. Price. Nonspherical Perturbations of Relativistic Gravitational Collapse. II. Integer-Spin, Zero-Rest-Mass Fields , 1972 .
[57] Johann Kronthaler. The Cauchy problem for the wave equation in the Schwarzschild geometry , 2006, gr-qc/0601131.
[58] P. Deift,et al. Inverse scattering on the line , 1979 .
[59] On Pointwise Decay of Linear Waves on a Schwarzschild Black Hole Background , 2009, 0911.3179.