A proof of Price's Law on Schwarzschild black hole manifolds for all angular momenta

Price's Law states that linear perturbations of a Schwarzschild black hole fall off as $t^{-2\ell-3}$ for $t \to \infty$ provided the initial data decay sufficiently fast at spatial infinity. Moreover, if the perturbations are initially static (i.e., their time derivative is zero), then the decay is predicted to be $t^{-2\ell-4}$. We give a proof of $t^{-2\ell-2}$ decay for general data in the form of weighted $L^1$ to $L^\infty$ bounds for solutions of the Regge--Wheeler equation. For initially static perturbations we obtain $t^{-2\ell-3}$. The proof is based on an integral representation of the solution which follows from self--adjoint spectral theory. We apply two different perturbative arguments in order to construct the corresponding spectral measure and the decay bounds are obtained by appropriate oscillatory integral estimates.

[1]  M. Tohaneanu,et al.  Strichartz Estimates on Schwarzschild Black Hole Backgrounds , 2008, 0802.3942.

[2]  M. Tohaneanu,et al.  A Local Energy Estimate on Kerr Black Hole Backgrounds , 2008, 0810.5766.

[3]  J. Luk Improved Decay for Solutions to the Linear Wave Equation on a Schwarzschild Black Hole , 2009, 0906.5588.

[4]  C. Misner,et al.  STABILITY OF THE SCHWARZSCHILD METRIC. , 1970 .

[5]  Thibault Damour,et al.  Improved analytical description of inspiralling and coalescing black-hole binaries , 2009, 0902.0136.

[6]  F. Zerilli,et al.  Effective potential for even parity Regge-Wheeler gravitational perturbation equations , 1970 .

[7]  Richard H. Price,et al.  Nonspherical perturbations of relativistic gravitational collapse , 1971 .

[8]  News from critical collapse: Bondi mass, tails, and quasinormal modes , 2004, gr-qc/0411078.

[9]  T. Damour,et al.  Accurate effective-one-body waveforms of inspiralling and coalescing black-hole binaries , 2008, 0803.3162.

[10]  S. Yau,et al.  Decay of Solutions of the Wave Equation in the Kerr Geometry , 2008 .

[11]  Mihalis Dafermos,et al.  The Red-shift effect and radiation decay on black hole spacetimes , 2005 .

[12]  Amos Ori,et al.  Late-time decay of scalar perturbations outside rotating black holes , 1999 .

[13]  A. Soffer,et al.  A Space–Time Integral Estimate For A Large Data Semi-linear Wave Equation on the Schwarzschild Manifold , 2007, math/0703399.

[14]  R. Price,et al.  Nonspherical Perturbations of Relativistic Gravitational Collapse. I. Scalar and Gravitational Perturbations , 1972 .

[15]  John Archibald Wheeler,et al.  Stability of a Schwarzschild singularity , 1957 .

[16]  M. Abramowitz,et al.  Handbook of Mathematical Functions With Formulas, Graphs and Mathematical Tables (National Bureau of Standards Applied Mathematics Series No. 55) , 1965 .

[17]  Radiative falloff of a scalar field in a weakly curved spacetime without symmetries , 2002, gr-qc/0205018.

[18]  S. Zając,et al.  Late-time tails of wave maps coupled to gravity , 2009, 0906.2919.

[19]  W. Schlag,et al.  Decay Estimates for the One-dimensional Wave Equation with an Inverse Power Potential , 2009, 0911.3174.

[20]  W. Schlag,et al.  Decay for the wave and Schrödinger evolutions on manifolds with conical ends, Part II , 2008, 0801.1999.

[21]  G. Matsas,et al.  Can quantum mechanics fool the cosmic censor , 2009, 0905.1077.

[22]  Steven Roman The Formula of FAA Di Bruno , 1980 .

[23]  Global Existence for the Einstein Vacuum Equations in Wave Coordinates , 2003, math/0312479.

[24]  D. Tataru,et al.  Decay estimates for variable coefficient wave equations in exterior domains , 2008, 0806.3409.

[25]  S. Klainerman,et al.  The Global Nonlinear Stability of the Minkowski Space. , 1994 .

[26]  A proof of Price’s law for the collapse of a self-gravitating scalar field , 2003, gr-qc/0309115.

[27]  Subrahmanyan Chandrasekhar,et al.  The Mathematical Theory of Black Holes , 1983 .

[28]  Gerald Teschl,et al.  Mathematical Methods in Quantum Mechanics , 2009 .

[29]  S. Hod How pure is the tail of gravitational collapse? , 2009, 0902.0237.

[30]  T. Damour,et al.  Comparing effective-one-body gravitational waveforms to accurate numerical data , 2007, 0711.2628.

[31]  A Rigorous Treatment of Energy Extraction from a Rotating Black Hole , 2007, gr-qc/0701018.

[32]  Petr Hořava Quantum Gravity at a Lifshitz Point , 2009, 0901.3775.

[33]  R. Wald,et al.  Point Charge in the Vicinity of a Schwarzschild Black Hole , 1971 .

[34]  Johann Kronthaler Decay rates for spherical scalar waves in the Schwarzschild geometry , 2007, 0709.3703.

[35]  D. Tataru Local decay of waves on asymptotically flat stationary space-times , 2009, 0910.5290.

[36]  W. Schlag Dispersive Estimates for Schr¨odinger Operators: a Survey , 2005 .

[37]  S. Yau,et al.  Linear waves in the Kerr geometry: A mathematical voyage to black hole physics , 2008, 0801.1423.

[38]  T. Damour,et al.  Faithful Effective-One-Body waveforms of equal-mass coalescing black-hole binaries , 2007, 0712.3003.

[39]  A. Soffer,et al.  Phase Space Analysis on some Black Hole Manifolds , 2005, math/0511281.

[40]  T. Chmaj,et al.  Late-time tails of a Yang–Mills field on Minkowski and Schwarzschild backgrounds , 2007, 0704.0993.

[41]  R. Wald,et al.  Linear stability of Schwarzschild under perturbations which are non-vanishing on the bifurcation 2-sphere , 1987 .

[42]  M. Pürrer,et al.  Tails for the Einstein–Yang–Mills system , 2008, 0810.2648.

[43]  I. Rodnianski,et al.  A note on energy currents and decay for the wave equation on a Schwarzschild background , 2007, 0710.0171.

[44]  Gaurav Khanna,et al.  Late-time Kerr tails revisited , 2007, 0711.0960.

[45]  W. D. Evans,et al.  PARTIAL DIFFERENTIAL EQUATIONS , 1941 .

[46]  Decay for the wave and Schrödinger evolutions on manifolds with conical ends, Part II , 2009 .

[47]  L. Burko,et al.  Late-time tails in the Reissner-Nordström spacetime revisited , 2007 .

[48]  I. Rodnianski,et al.  Lectures on black holes and linear waves , 2008, 0811.0354.

[49]  R. Wald Note on the stability of the Schwarzschild metric , 1979 .

[50]  S. Tanveer,et al.  Semiclassical analysis of low and zero energy scattering for one dimensional Schr , 2008, 0804.2282.

[51]  Jean Bourgain,et al.  Mathematical aspects of nonlinear dispersive equations , 2007 .

[52]  S. Chandrasekhar On the equations governing the perturbations of the Schwarzschild black hole , 1975, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[53]  Milton Abramowitz,et al.  Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables , 1964 .

[54]  D. Tataru,et al.  Global parametrices and dispersive estimates for variable coefficient wave equations , 2007, 0707.1191.

[55]  P. Aichelburg,et al.  Bifurcation and fine structure phenomena in critical collapse of a self-gravitating σ-field , 2005, gr-qc/0512136.

[56]  R. Price Nonspherical Perturbations of Relativistic Gravitational Collapse. II. Integer-Spin, Zero-Rest-Mass Fields , 1972 .

[57]  Johann Kronthaler The Cauchy problem for the wave equation in the Schwarzschild geometry , 2006, gr-qc/0601131.

[58]  P. Deift,et al.  Inverse scattering on the line , 1979 .

[59]  On Pointwise Decay of Linear Waves on a Schwarzschild Black Hole Background , 2009, 0911.3179.