Flexible modeling for stock-recruitment relationships using Bayesian nonparametric mixtures

The stock and recruitment relationship is fundamental to the management of fishery natural resources. However, inferring stock-recruitment relationships is a challenging problem because of the limited available data, the collection of plausible models, and the biological characteristics that should be reflected in the model. Motivated by limitations of traditional parametric stock-recruitment models, we propose a Bayesian nonparametric approach based on a mixture model for the joint distribution of log-reproductive success and stock biomass. Flexible mixture modeling for this bivariate distribution yields rich inference for the stock-recruitment relationship through the implied conditional distribution of log-reproductive success given stock biomass. The method is illustrated with cod data from six regions of the North Atlantic, including comparison with simpler Bayesian parametric and semiparametric models.

[1]  Ulf Dieckmann,et al.  LONG-TERM TREND IN THE MATURATION REACTION NORM OF TWO COD STOCKS , 2004 .

[2]  C. Walters,et al.  Quantitative fisheries stock assessment: Choice, dynamics and uncertainty , 2004, Reviews in Fish Biology and Fisheries.

[3]  S. MacEachern,et al.  Bayesian Density Estimation and Inference Using Mixtures , 2007 .

[4]  Russell B. Millar,et al.  Non‐linear state space modelling of fisheries biomass dynamics by using Metropolis‐Hastings within‐Gibbs sampling , 2000 .

[5]  James S. Clark,et al.  Why environmental scientists are becoming Bayesians , 2004 .

[6]  K. S. Chan,et al.  Cod and climate: effect of the North Atlantic Oscillation on recruitment in the North Atlantic , 2006 .

[7]  Terrance J. Quinn,et al.  Quantitative Fish Dynamics , 1999 .

[8]  Serge M. Garcia,et al.  Global overview of marine fisheries. , 2003 .

[9]  R. Cook A sustainability criterion for the exploitation of North Sea cod , 1998 .

[10]  M. Eero,et al.  Eastern Baltic cod (Gadus morhua callarias) stock dynamics: extending the analytical assessment back to the mid-1940s , 2007 .

[11]  Radford M. Neal Regression and Classification Using Gaussian Process Priors , 2009 .

[12]  Robert J. Connor,et al.  Concepts of Independence for Proportions with a Generalization of the Dirichlet Distribution , 1969 .

[13]  G. Evans,et al.  Predicting recruitment from stock size without the mediation of a functional relation , 1988 .

[14]  J. Sethuraman A CONSTRUCTIVE DEFINITION OF DIRICHLET PRIORS , 1991 .

[15]  Albert Y. Lo,et al.  On a Class of Bayesian Nonparametric Estimates: I. Density Estimates , 1984 .

[16]  Matt Taddy,et al.  Markov switching Dirichlet process mixture regression , 2009 .

[17]  Chuck Hollingworth,et al.  Responsible Fisheries in the Marine Ecosystem , 2004 .

[18]  Michael,et al.  On a Class of Bayesian Nonparametric Estimates : I . Density Estimates , 2008 .

[19]  Ransom A. Myers,et al.  Time series bias in the estimation of density-dependent mortality in stock-recruitment models , 1995 .

[20]  K. Brander,et al.  Effect of the North Atlantic Oscillation on recruitment of Atlantic cod (Gadus morhua) , 2004 .

[21]  A. P. Dawid,et al.  Regression and Classification Using Gaussian Process Priors , 2009 .

[22]  P. Müller,et al.  Bayesian curve fitting using multivariate normal mixtures , 1996 .

[23]  C. Walters Bias in the Estimation of Functional Relationships from Time Series Data , 1985 .

[24]  James S. Clark,et al.  Models for Ecological Data: An Introduction , 2007 .

[25]  Alan E. Gelfand,et al.  Model choice: A minimum posterior predictive loss approach , 1998, AISTATS.

[26]  Lancelot F. James,et al.  Gibbs Sampling Methods for Stick-Breaking Priors , 2001 .

[27]  M. Mcallister,et al.  Bayesian stock assessment: a review and example application using the logistic model , 1998 .

[28]  T. Ferguson A Bayesian Analysis of Some Nonparametric Problems , 1973 .

[29]  C. Walters,et al.  Measurement Errors and Uncertainty in Parameter Estimates for Stock and Recruitment , 1981 .

[30]  A. Kottas,et al.  A Bayesian Nonparametric Approach to Inference for Quantile Regression , 2010 .

[31]  R. Hilborn,et al.  Fisheries stock assessment and decision analysis: the Bayesian approach , 1997, Reviews in Fish Biology and Fisheries.

[32]  M. Escobar,et al.  Bayesian Density Estimation and Inference Using Mixtures , 1995 .

[33]  Marc Mangel,et al.  Bayesian nonparametric analysis of stock- recruitment relationships , 2005 .

[34]  Larry D. Jacobson,et al.  Stock-recruitment models for Pacific sardine (Sardinops sagax) , 1995 .

[35]  W. Ricker Stock and Recruitment , 1954 .

[36]  Ding-Geng Chen,et al.  A neural network model for forecasting fish stock recruitment , 1999 .

[37]  H. Ishwaran,et al.  Markov chain Monte Carlo in approximate Dirichlet and beta two-parameter process hierarchical models , 2000 .