A Kalman Filter-Based Method to Generate Continuous Time Series of Medium-Resolution NDVI Images

A data assimilation method to produce complete temporal sequences of synthetic medium-resolution images is presented. The method implements a Kalman filter recursive algorithm that integrates medium and moderate resolution imagery. To demonstrate the approach, time series of 30-m spatial resolution NDVI images at 16-day time steps were generated using Landsat NDVI images and MODIS NDVI products at four sites with different ecosystems and land cover-land use dynamics. The results show that the time series of synthetic NDVI images captured seasonal land surface dynamics and maintained the spatial structure of the landscape at higher spatial resolution. The time series of synthetic medium-resolution NDVI images were validated within a Monte Carlo simulation framework. Normalized residuals decreased as the number of available observations increased, ranging from 0.2 to below 0.1. Residuals were also significantly lower for time series of synthetic NDVI images generated at combined recursion (smoothing) than individually at forward and backward recursions (filtering). Conversely, the uncertainties of the synthetic images also decreased when the number of available observations increased and combined recursions were implemented.

[1]  Philip Lewis,et al.  Assimilating canopy reflectance data into an ecosystem model with an Ensemble Kalman Filter , 2008 .

[2]  C. Tucker Red and photographic infrared linear combinations for monitoring vegetation , 1979 .

[3]  Xiaolin Zhu,et al.  An enhanced spatial and temporal adaptive reflectance fusion model for complex heterogeneous regions , 2010 .

[4]  R. E. Kalman,et al.  A New Approach to Linear Filtering and Prediction Problems , 2002 .

[5]  D. Roy,et al.  Web-enabled Landsat Data (WELD): Landsat ETM+ composited mosaics of the conterminous United States , 2010 .

[6]  J. Vogelmann,et al.  Monitoring forest changes in the southwestern United States using multitemporal Landsat data , 2009 .

[7]  Frédéric Baret,et al.  Intercalibration of vegetation indices from different sensor systems , 2003 .

[8]  J. Hill,et al.  Coupling spectral unmixing and trend analysis for monitoring of long-term vegetation dynamics in Mediterranean rangelands , 2003 .

[9]  Dan Arbel,et al.  Landsat TM satellite image restoration using Kalman filters , 2004 .

[10]  N. Coops,et al.  Estimation of insect infestation dynamics using a temporal sequence of Landsat data , 2008 .

[11]  D. Roy,et al.  The availability of cloud-free Landsat ETM+ data over the conterminous United States and globally , 2008 .

[12]  Zhao-Liang Li,et al.  Validation of the land-surface temperature products retrieved from Terra Moderate Resolution Imaging Spectroradiometer data , 2002 .

[13]  Maosheng Zhao,et al.  Improvements of the MODIS terrestrial gross and net primary production global data set , 2005 .

[14]  Jinwei Dong,et al.  Green-up dates in the Tibetan Plateau have continuously advanced from 1982 to 2011 , 2013, Proceedings of the National Academy of Sciences.

[15]  Peng Gong,et al.  Land cover assessment with MODIS imagery in southern African Miombo ecosystems , 2005 .

[16]  D. Roy,et al.  A method for integrating MODIS and Landsat data for systematic monitoring of forest cover and change in the Congo Basin , 2008 .

[17]  R. Nemani,et al.  Persistent effects of a severe drought on Amazonian forest canopy , 2012, Proceedings of the National Academy of Sciences.

[18]  Yi Y. Liu,et al.  Evaluating global trends (1988–2010) in harmonized multi‐satellite surface soil moisture , 2012 .

[19]  J. Chen,et al.  Retrieving Leaf Area Index of Boreal Conifer Forests Using Landsat TM Images , 1996 .

[20]  Zhiqiang Yang,et al.  Detecting trends in forest disturbance and recovery using yearly Landsat time series: 1. LandTrendr — Temporal segmentation algorithms , 2010 .

[21]  J. Dungan,et al.  Generating global Leaf Area Index from Landsat: Algorithm formulation and demonstration , 2012 .

[22]  J. Cihlar,et al.  AVHRR bidirectional reflectance effects and compositing , 1994 .

[23]  Pieter Kempeneers,et al.  Data Fusion of Different Spatial Resolution Remote Sensing Images Applied to Forest-Type Mapping , 2011, IEEE Transactions on Geoscience and Remote Sensing.

[24]  Bernhard Geiger,et al.  Use of a Kalman filter for the retrieval of surface BRDF coefficients with a time-evolving model based on the ECOCLIMAP land cover classification , 2008 .

[25]  Shijo Joseph,et al.  Consistent response of vegetation dynamics to recent climate change in tropical mountain regions , 2014, Global change biology.

[26]  M. Friedl,et al.  Detecting interannual variation in deciduous broadleaf forest phenology using Landsat TM/ETM+ data , 2013 .

[27]  Z. Wan New refinements and validation of the collection-6 MODIS land-surface temperature/emissivity product , 2014 .

[28]  D. Roy,et al.  Multi-temporal MODIS-Landsat data fusion for relative radiometric normalization, gap filling, and prediction of Landsat data , 2008 .

[29]  M. Schaepman,et al.  Downscaling time series of MERIS full resolution data to monitor vegetation seasonal dynamics , 2009 .

[30]  K. Davis,et al.  The MODIS (Collection V005) BRDF/albedo product: Assessment of spatial representativeness over forested landscapes , 2009 .

[31]  Shu-Li Sun,et al.  Multi-sensor optimal information fusion Kalman filter , 2004, Autom..

[32]  Adrian E. Raftery,et al.  Bayesian model averaging: a tutorial (with comments by M. Clyde, David Draper and E. I. George, and a rejoinder by the authors , 1999 .

[33]  Stephen V. Stehman,et al.  Combining MODIS and Landsat imagery to estimate and map boreal forest cover loss , 2008 .

[34]  Kalle Ruokolainen,et al.  Across-path DN gradient in Landsat TM imagery of Amazonian forests: A challenge for image interpretation and mosaicking , 2006 .

[35]  Damien Sulla-Menashe,et al.  MODIS Collection 5 global land cover: Algorithm refinements and characterization of new datasets , 2010 .

[36]  Assaf Anyamba,et al.  Global Trends in Seasonality of Normalized Difference Vegetation Index (NDVI), 1982-2011 , 2013, Remote. Sens..

[37]  Lin Yan,et al.  Automated crop field extraction from multi-temporal Web Enabled Landsat Data , 2014 .

[38]  Martha C. Anderson,et al.  Free Access to Landsat Imagery , 2008, Science.

[39]  T. Başar,et al.  A New Approach to Linear Filtering and Prediction Problems , 2001 .

[40]  Michael Grüninger,et al.  Introduction , 2002, CACM.

[41]  Peter Vogt,et al.  A cloud mask methodology for high resolution remote sensing data combining information from high and medium resolution optical sensors , 2011 .

[42]  Adrian E. Raftery,et al.  Bayesian model averaging: development of an improved multi-class, gene selection and classification tool for microarray data , 2005, Bioinform..

[43]  M. C. Hansena,et al.  Development of a MODIS tree cover validation data set for Western Province , Zambia , 2002 .

[44]  J. L. Barker,et al.  Radiometric cross-calibration of the Landsat-7 ETM+ and Landsat-5 TM sensors based on tandem data sets , 2001 .

[45]  A. Garzelli,et al.  Kalman-based Pan-sharpening of very high resolution multispectral images , 2008 .

[46]  K. Weber,et al.  Comparison of MODIS fPAR Products with Landsat-5 TM-Derived fPAR over Semiarid Rangelands of Idaho , 2010 .

[47]  M. Hansen,et al.  Regional-scale boreal forest cover and change mapping using Landsat data composites for European Russia , 2011 .

[48]  F. Gao,et al.  An algorithm for the retrieval of 30-m snow-free albedo from Landsat surface reflectance and MODIS BRDF , 2011 .

[49]  C. Striebel,et al.  On the maximum likelihood estimates for linear dynamic systems , 1965 .

[50]  S. Running,et al.  Global products of vegetation leaf area and fraction absorbed PAR from year one of MODIS data , 2002 .

[51]  Luis Alonso,et al.  Multitemporal fusion of Landsat/TM and ENVISAT/MERIS for crop monitoring , 2013, Int. J. Appl. Earth Obs. Geoinformation.

[52]  Peter S. Maybeck,et al.  Stochastic Models, Estimation And Control , 2012 .

[53]  Greg Welch,et al.  An Introduction to Kalman Filter , 1995, SIGGRAPH 2001.

[54]  S. Goward,et al.  An automated approach for reconstructing recent forest disturbance history using dense Landsat time series stacks , 2010 .

[55]  D. Roy,et al.  The collection 5 MODIS burned area product — Global evaluation by comparison with the MODIS active fire product , 2008 .

[56]  Chunlin Huang,et al.  Retrieving soil temperature profile by assimilating MODIS LST products with ensemble Kalman filter , 2008 .

[57]  Stuart E. Marsh,et al.  Biophysical characterization and management effects on semiarid rangeland observed from Landsat ETM+ data , 2005, IEEE Transactions on Geoscience and Remote Sensing.

[58]  G. Campbell,et al.  Simple equation to approximate the bidirectional reflectance from vegetative canopies and bare soil surfaces. , 1985, Applied optics.

[59]  W. Cohen,et al.  North American forest disturbance mapped from a decadal Landsat record , 2008 .

[60]  H. Rauch Solutions to the linear smoothing problem , 1963 .

[61]  Carlos Torres-Verdín,et al.  Efficient Numerical Simulation of Axisymmetric Electromagnetic Induction Measurements Using a High-Order Generalized Extended Born Approximation , 2006, IEEE Transactions on Geoscience and Remote Sensing.

[62]  Scott J. Goetz,et al.  Satellite observations of high northern latitude vegetation productivity changes between 1982 and 2008: ecological variability and regional differences , 2011 .

[63]  C. Justice,et al.  Global distribution and seasonality of active fires as observed with the Terra and Aqua Moderate Resolution Imaging Spectroradiometer (MODIS) sensors , 2006 .

[64]  J. Townshend,et al.  Global Percent Tree Cover at a Spatial Resolution of 500 Meters: First Results of the MODIS Vegetation Continuous Fields Algorithm , 2003 .

[65]  Edwin W. Pak,et al.  An extended AVHRR 8‐km NDVI dataset compatible with MODIS and SPOT vegetation NDVI data , 2005 .

[66]  Joanne C. White,et al.  A new data fusion model for high spatial- and temporal-resolution mapping of forest disturbance based on Landsat and MODIS , 2009 .

[67]  A. Huete,et al.  MODIS VEGETATION INDEX ( MOD 13 ) ALGORITHM THEORETICAL BASIS DOCUMENT Version 3 . 1 Principal Investigators , 1999 .

[68]  Waldo Kleynhans,et al.  Detecting Land Cover Change Using an Extended Kalman Filter on MODIS NDVI Time-Series Data , 2011, IEEE Geoscience and Remote Sensing Letters.

[69]  K. Beurs,et al.  Evaluation of Landsat and MODIS data fusion products for analysis of dryland forest phenology , 2012 .

[70]  Rasmus Fensholt,et al.  Assessing Land Degradation/Recovery in the African Sahel from Long-Term Earth Observation Based Primary Productivity and Precipitation Relationships , 2013, Remote. Sens..

[71]  Qian Sun,et al.  Kalman-Filter-Based Approach for Multisensor, Multitrack, and Multitemporal InSAR , 2013, IEEE Transactions on Geoscience and Remote Sensing.

[72]  S. Bruin,et al.  Trend changes in global greening and browning: contribution of short‐term trends to longer‐term change , 2012 .

[73]  Chunlin Huang,et al.  Experiments of one-dimensional soil moisture assimilation system based on ensemble Kalman filter , 2008 .

[74]  José A. Sobrino,et al.  The Yearly Land Cover Dynamics (YLCD) method: An analysis of global vegetation from NDVI and LST parameters , 2009 .

[75]  Tomás Martínez-Marín,et al.  Crop Phenology Estimation Using a Multitemporal Model and a Kalman Filtering Strategy , 2014, IEEE Geoscience and Remote Sensing Letters.

[76]  W. Cohen,et al.  Evaluation of MODIS NPP and GPP products across multiple biomes. , 2006 .

[77]  Arief Wijaya,et al.  Fusion of ALOS Palsar and Landsat ETM data for land cover classification and biomass modeling using non-linear methods , 2009, 2009 IEEE International Geoscience and Remote Sensing Symposium.

[78]  Conghe Song,et al.  Downscaling real-time vegetation dynamics by fusing multi-temporal MODIS and Landsat NDVI in topographically complex terrain , 2011 .

[79]  Pierre-Philippe Mathieu,et al.  Data assimilation: From photon counts to Earth System forecasts , 2008 .

[80]  C. Woodcock,et al.  Continuous change detection and classification of land cover using all available Landsat data , 2014 .

[81]  Bruce C. Forbes,et al.  Shifts in Arctic phenology in response to climate and anthropogenic factors as detected from multiple satellite time series , 2013 .

[82]  N. A. Campbell,et al.  Bi-directional reflectance distribution function approaches to radiometric calibration of Landsat ETM+ imagery , 2001, IGARSS 2001. Scanning the Present and Resolving the Future. Proceedings. IEEE 2001 International Geoscience and Remote Sensing Symposium (Cat. No.01CH37217).

[83]  Mathew R. Schwaller,et al.  On the blending of the Landsat and MODIS surface reflectance: predicting daily Landsat surface reflectance , 2006, IEEE Transactions on Geoscience and Remote Sensing.