On the evolution of the DyNiO3 perovskite across the metal-insulator transition though neutron diffraction and Mössbauer spectroscopy studies.

The structural changes of polycrystalline DyNiO3 perovskite across the metal-insulator transition (TMI = 564 K) have been studied by high resolution neutron diffraction techniques together with Mössbauer spectroscopy, in a sample doped with 1.5 at.% 57Fe. In the insulating (semi-conducting) regime, below T(MI), the perovskite is monoclinic, space group (SG) P21/n, and the crystal structure contains two chemically different Ni1 and Ni2 cations, as a result of the charge disproportionation of Ni3+ cations. The beta parameter, characterizing the low-temperature monoclinic distortion, is smaller than 90.04 degrees for T < TMI, indicating a strongly pseudo-orthorhombic symmetry, although the internal monoclinic symmetry, implying the splitting and shifts of oxygen positions around the two Ni sites is perfectly detected by neutrons. Above TMI, DyNiO3 becomes orthorhombic, SG Pbnm. Upon heating across TMI, there is an abrupt convergence of the two sets (Ni1 and Ni2) of three Ni-O bond lengths, in the monoclinic-insulating phase, to three unique Ni-O distances in the orthorhombic-metallic phase upon entering the metallic region. The 57Fe Mössbauer spectra of an iron-doped (1.5 at.%) DyNiO3 sample recorded in the insulating, paramagnetic temperature range (TN < T < TMI) are discussed by supposing that the Fe3+ probe cations replace nickel in the two octahedral Ni1 and Ni2 sites. Electric field gradient calculations have shown that the 57Fe hyperfine parameters of Fe1 and Fe2 subspectra reflect a specificity of local structure corresponding to large (Ni1O6) and small (Ni2O6) octahedra. At T > TMI, the 57Fe spectrum gives clear evidence for the formation of an unique state for iron probe atoms and could, therefore, imply that the charge disproportionation in the (NiO6) subarray completely vanishes at the insulator-->metal transition.

[1]  H. Micklitz,et al.  Evidence for charge disproportionation in monoclinic Eu Ni O 3 from Fe 57 Mössbauer spectroscopy , 2007 .

[2]  V. Rusakov,et al.  Evidence through Mössbauer spectroscopy of two different states for 57Fe probe atoms in RNiO3 perovskites with intermediate-size rare earths, R = Sm,Eu,Gd,Dy , 2007 .

[3]  A. Sobolev,et al.  Mössbauer characterization ofFe57dopant ions across the insulator-metal transition inANi0.98Fe0.02O3(A=Nd,Lu)perovskites , 2005 .

[4]  J. Hodeau,et al.  Resonant x-ray scattering experiments on electronic orderings inNdNiO3single crystals , 2005 .

[5]  Short-range Charge Order In Rnio 3 Perovskites (r=pr, Nd, Eu, Y) Probed By X-ray-absorption Spectroscopy , 2004, cond-mat/0412277.

[6]  J. Goodenough,et al.  Chemical bonding and electronic structure of RNiO3 (R=rare earth) , 2004 .

[7]  M. T. Casais,et al.  Possible common ground for the metal-insulator phase transition in the rare-earth nickelates R NiO 3 ( R = Eu , Ho, Y) , 2002 .

[8]  A. Sobolev,et al.  Mossbauer Investigation of 57Fe-Doped Ni(III) Perovskites ANi0.98Fe0.02O3 (A=Pr, Nd, Sm, Y, Lu, Tl) versus Temperature , 2002 .

[9]  A. Sobolev,et al.  Orbital ordering in NdNiO3 and SmNiO3 investigated by Mössbauer spectroscopy , 2002 .

[10]  F. d’Acapito,et al.  Direct observation of charge order in an epitaxial NdNiO3 film. , 2002, Physical review letters.

[11]  M. T. Casais,et al.  Magnetic structure of theHoNiO3perovskite , 2001 .

[12]  A. Sobolev,et al.  (57)Fe Mössbauer investigation on doped nickelates ANiO(3) (A = Y, Lu, Tl). , 2001, Journal of the American Chemical Society.

[13]  M. T. Casais,et al.  High-temperature structural evolution of R NiO 3 ( R = H o , Y , E r , Lu ) perovskites: Charge disproportionation and electronic localization , 2001 .

[14]  M. T. Casais,et al.  Room-temperature monoclinic distortion due to charge disproportionation in R NiO 3 perovskites with small rare-earth cations ( R = Ho , Y, Er, Tm, Yb, and Lu): A neutron diffraction study , 2000 .

[15]  M. T. Casais,et al.  High-pressure preparation, crystal structure, magnetic properties, and phase transitions in GdNiO3 and DyNiO3 perovskites , 1999 .

[16]  M. T. Casais,et al.  Charge Disproportionation in RNiO3 Perovskites: Simultaneous Metal-Insulator and Structural Transition in YNiO3 , 1999 .

[17]  M. T. Casais,et al.  METAL-INSULATOR TRANSITIONS, STRUCTURAL AND MICROSTRUCTURAL EVOLUTION OF RNIO3 (R = SM, EU, GD, DY, HO, Y) PEROVSKITES : EVIDENCE FOR ROOM-TEMPERATURE CHARGE DISPROPORTIONATION IN MONOCLINIC HONIO3 AND YNIO3 , 1999 .

[18]  J. Rodríguez-Carvajal,et al.  NEUTRON-DIFFRACTION STUDY OF THE MAGNETIC AND ORBITAL ORDERING IN 154SMNIO3 AND 153EUNIO3 , 1998 .

[19]  M. Medarde,et al.  Structural, magnetic and electronic properties of perovskites (R = rare earth) , 1997 .

[20]  J. Alonso,et al.  Preparation, Crystal Structure, and Metal-to-Insulator Transition of EuNiO3 , 1995 .

[21]  J. Rodríguez-Carvajal,et al.  Neutron-diffraction study of the magnetic ordering in the insulating regime of the perovskites RNiO3 (R=Pr and Nd). , 1994, Physical review. B, Condensed matter.

[22]  Juan Rodríguez-Carvajal,et al.  Recent advances in magnetic structure determination by neutron powder diffraction , 1993 .

[23]  J. Rodríguez-Carvajal,et al.  Neutron-diffraction study of RNiO3 (R=La,Pr,Nd,Sm): Electronically induced structural changes across the metal-insulator transition. , 1992, Physical review. B, Condensed matter.

[24]  Nazzal,et al.  Systematic study of insulator-metal transitions in perovskites RNiO3 (R=Pr,Nd,Sm,Eu) due to closing of charge-transfer gap. , 1992, Physical review. B, Condensed matter.

[25]  Michael O'Keeffe,et al.  Bond-valence parameters for solids , 1991 .

[26]  A. Navrotsky,et al.  Structure and bonding in crystals, Vol. 1 , 1982 .

[27]  P. M. Raccah,et al.  Complex vs Band Formation in Perovskite Oxides , 1965 .