Denudation of the Golan Heights basaltic terrain using in-situ 36Cl and OSL dating

[1]  H. Goosse,et al.  New cosmogenic nuclide constraints on Late Glacial and Holocene glacier fluctuations in the sub-Antarctic Indian Ocean (Kerguelen Islands, 49°S) , 2022 .

[2]  C. Vockenhuber,et al.  Nonuniform Late Pleistocene glacier fluctuations in tropical Eastern Africa , 2021, Science Advances.

[3]  N. Porat,et al.  Quaternary evolution of a hyperarid drainage under climatic fluctuations and rift-margin base-level fall, NE Negev, Israel , 2020 .

[4]  R. Weinberger,et al.  Impact of the Dead Sea Transform Kinematics on Adjacent Volcanic Activity , 2020, Tectonics.

[5]  A. Koppers,et al.  Paleomagnetism and Paleosecular Variations From the Plio‐Pleistocene Golan Heights Volcanic Plateau, Israel , 2019, Geochemistry, Geophysics, Geosystems.

[6]  D. Tikhomirov,et al.  Holocene seismic activity of the Priene–Sazlı Fault revealed by cosmogenic 36Cl,Western Anatolia, Turkey , 2019, TURKISH JOURNAL OF EARTH SCIENCES.

[7]  L. Sancho,et al.  A multi-proxy approach to Late Holocene fluctuations of Tungnahryggsjökull glaciers in the Tröllaskagi peninsula (northern Iceland). , 2019, The Science of the total environment.

[8]  L. Benedetti,et al.  Patterns and rates of 103–105 yr denudation in carbonate terrains under subhumid to subalpine climatic gradient, Mount Hermon, Israel , 2018, GSA Bulletin.

[9]  D. Bourlès,et al.  Dating late Holocene lava flows in Pico de Orizaba (Mexico) by means of in situ-produced cosmogenic 36Cl, lichenometry and dendrochronology , 2018, Quaternary Geochronology.

[10]  J. Perron,et al.  Climate and the Pace of Erosional Landscape Evolution , 2017 .

[11]  M. Meyer,et al.  Variations in luminescence properties of quartz and feldspar from modern fluvial sediments in three rivers , 2017 .

[12]  E. Shabanian,et al.  Morphological controls on the dynamics of carbonate landscapes under a mediterranean climate , 2017 .

[13]  N. Porat,et al.  Rujm el-Hiri: The Monument in the Landscape1 , 2017 .

[14]  Y. Enzel,et al.  Cosmogenic-Isotope Based Erosion Rates along the Western Margin of the Dead Sea Fault , 2017 .

[15]  V. Masson‐Delmotte,et al.  Paradoxical cold conditions during the medieval climate anomaly in the Western Arctic , 2016, Scientific Reports.

[16]  E. Shabanian,et al.  Weathering-limited hillslope evolution in carbonate landscapes , 2016 .

[17]  N. Porat,et al.  Controls on aggradation and incision in the NE Negev, Israel, since the middle Pleistocene , 2016 .

[18]  M. Caffee,et al.  CRONUS-Earth cosmogenic 36Cl calibration , 2016 .

[19]  N. Porat,et al.  Aggradation–incision transition in arid environments at the end of the Pleistocene: An example from the Negev Highlands, southern Israel , 2016 .

[20]  L. Benedetti,et al.  Styles and rates of long-term denudation in carbonate terrains under a Mediterranean to hyper-arid climatic gradient , 2014 .

[21]  Y. Eyal,et al.  Evolution and degradation of flat‐top mesas in the hyper‐arid Negev, Israel revealed from 10Be cosmogenic nuclides , 2014 .

[22]  Paul R. Bierman,et al.  A Cosmogenic view of erosion, relief generation, and the age of faulting in southern Africa , 2014 .

[23]  L. Benedetti,et al.  36Cl production rate from K‐spallation in the European Alps (Chironico landslide, Switzerland) , 2014 .

[24]  A. Matmon,et al.  Controls on denudation rates in tectonically stable Mediterranean carbonate terrain , 2014 .

[25]  R. Finkel,et al.  Holocene rockfalls in the southern Negev Desert, Israel and their relation to Dead Sea fault earthquakes , 2014, Quaternary Research.

[26]  Tammy M. Rittenour,et al.  Landscape evolution, valley excavation, and terrace development following abrupt postglacial base-level fall , 2013 .

[27]  R. Finkel,et al.  Earthquake synchrony and clustering on Fucino faults (Central Italy) as revealed from in situ 36Cl exposure dating , 2013 .

[28]  D. Bourlès,et al.  Denudation rates of the Southern Espinhaço Range, Minas Gerais, Brazil, determined by in situ-produced cosmogenic beryllium-10 , 2013 .

[29]  R. Finkel,et al.  The French accelerator mass spectrometry facility ASTER after 4 years: Status and recent developments on 36Cl and 129I , 2013 .

[30]  N. Porat,et al.  Archaeological investigations and OSL dating of terraces at Ramat Rahel, Israel , 2012 .

[31]  Rex Galbraith,et al.  Statistical aspects of equivalent dose and error calculation and display in OSL dating: An overview and some recommendations , 2012 .

[32]  N. Porat,et al.  OSL dating in multi-strata Tel: Megiddo (Israel) as a case study , 2012 .

[33]  K. Whipple,et al.  The influence of erosion thresholds and runoff variability on the relationships among topography, climate, and erosion rate , 2011 .

[34]  D. Fink,et al.  Revealing sediment sources, mixing, and transport during erosional crater evolution in the hyperarid Negev Desert, Israel , 2011 .

[35]  M. Reshef,et al.  Seismic depth-domain stratigraphic classification of the Golan Heights, central Dead Sea Fault , 2011 .

[36]  P. Bierman,et al.  Understanding Earth’s eroding surface with 10Be , 2011 .

[37]  R. Finkel,et al.  Calibration of cosmogenic 36Cl production rates from Ca and K spallation in lava flows from Mt. Etna (38°N, Italy) and Payun Matru (36°S, Argentina) , 2011 .

[38]  M. Caffee,et al.  Ultra-trace analysis of 36Cl by accelerator mass spectrometry: an interlaboratory study , 2011, Analytical and bioanalytical chemistry.

[39]  R. Finkel,et al.  Quaternary-scale evolution of sequences of talus flatirons in the hyperarid Negev , 2011 .

[40]  N. Porat,et al.  Constraining the evolution of river terraces with integrated OSL and cosmogenic nuclide data , 2011 .

[41]  R. Finkel,et al.  Using in situ Chlorine-36 cosmonuclide to recover past earthquake histories on limestone normal fault scarps: a reappraisal of methodology and interpretations , 2010 .

[42]  D. Fink,et al.  10Be exposure ages of ancient desert pavements reveal Quaternary evolution of the Dead Sea drainage basin and rift margin tilting , 2010 .

[43]  R. Finkel,et al.  Sources of in-situ 36Cl in basaltic rocks. Implications for calibration of production rates , 2009 .

[44]  A. Murray,et al.  Optically stimulated luminescence dating of young sediments: A review , 2009 .

[45]  R. Finkel,et al.  Desert pavement-coated surfaces in extreme deserts present the longest-lived landforms on Earth , 2009 .

[46]  G. Gravenhorst,et al.  The chemical composition and sources of the bulk deposition on Lake Kinneret (The Sea of Galilee), Israel. , 2009 .

[47]  R. Finkel,et al.  Cosmogenic 36Cl production rates from Ca spallation in Iceland , 2008 .

[48]  R. Kahana,et al.  The climatic and physiographic controls of the eastern Mediterranean over the late Pleistocene climates in the southern Levant and its neighboring deserts , 2008 .

[49]  Susan Ivy-Ochs,et al.  Denudation rates and a topography-driven rainfall threshold in northern Chile: Multiple cosmogenic nuclide data and sediment yield budgets , 2007 .

[50]  M. Stein,et al.  The Role of Lithospheric Mantle Heterogeneity in the Generation of Plio-Pleistocene Alkali Basaltic Suites from NW Harrat Ash Shaam (Israel) , 2006 .

[51]  D. Montgomery,et al.  Spatial patterns of precipitation and topography in the Himalaya , 2006 .

[52]  K. Whipple,et al.  Amplified erosion above waterfalls and oversteepened bedrock reaches , 2005 .

[53]  K. Nishiizumi,et al.  Remnants of a fossil alluvial fan landscape of Miocene age in the Atacama Desert of northern Chile using cosmogenic nuclide exposure age dating , 2005 .

[54]  R. Finkel,et al.  Slip history of the Magnola fault (Apennines, Central Italy) from 36Cl surface exposure dating: Evidence for strong earthquakes over the Holocene , 2004 .

[55]  M. Caffee,et al.  Temporally and spatially uniform rates of erosion in the southern Appalachian Great Smoky Mountains , 2003 .

[56]  R. Anderson,et al.  Numerical modeling of fluvial strath-terrace formation in response to oscillating climate , 2002 .

[57]  R. Finkel,et al.  Post‐glacial slip history of the Sparta fault (Greece) determined by 36Cl cosmogenic dating: Evidence for non‐periodic earthquakes , 2002 .

[58]  W. Dietrich,et al.  Sediment and rock strength controls on river incision into bedrock , 2001 .

[59]  F. Phillips,et al.  Terrestrial in situ cosmogenic nuclides: theory and application , 2001 .

[60]  C. Riebe,et al.  Strong tectonic and weak climatic control of long-term chemical weathering rates , 2001 .

[61]  M. Caffee,et al.  Displacement history of a limestone normal fault scarp, northern Israel, from cosmogenic 36Cl , 2001 .

[62]  M. Caffee,et al.  Sediment yield exceeds sediment production in arid region drainage basins , 2000 .

[63]  J. Stone Air pressure and cosmogenic isotope production , 2000 .

[64]  S. Weiner,et al.  Dating of prehistoric caves sediments and flints using 10Be and 26Al in quartz from Tabun Cave (Israel): Progress report , 2000 .

[65]  D. Fink,et al.  Cross-sections for 36Cl from Ti at Ep=35–150 MeV: Applications to in-situ exposure dating , 2000 .

[66]  N. Porat,et al.  Changes in Holocene Paleoseismic activity in the Hula pull-apart basin, Dead Sea Rift, northern Israel , 2000 .

[67]  M. Inbar Episodes of flash floods and boulder transport in the Upper Jordan River , 2000 .

[68]  J. Kirchner,et al.  Dating exhumation of orogenic belts using cosmogenic isotopes in cave deposits and alluvial terraces , 1997 .

[69]  Nicholas Brozovic,et al.  Bedrock incision, rock uplift and threshold hillslopes in the northwestern Himalayas , 1996, Nature.

[70]  P. Bierman,et al.  ESTIMATING RATES OF DENUDATION USING COSMOGENIC ISOTOPE ABUNDANCES IN SEDIMENT , 1996 .

[71]  R. Bell,et al.  Gravity field over the Sea of Galilee: Evidence for a composite basin along a transform fault , 1996 .

[72]  Marc W. Caffee,et al.  Estimating erosion rates and exposure ages with 36Cl produced by neutron activation , 1995 .

[73]  P. Bierman Using in situ produced cosmogenic isotopes to estimate rates of landscape evolution: A review from the geomorphic perspective , 1994 .

[74]  D. Mor A time-table for the levant volcanic province, according to K-Ar dating in the golan heights, Israel , 1993 .

[75]  J. Harbor,et al.  Relative Rates of Glacial and Nonglacial Erosion in Alpine Environments , 1993 .

[76]  M. Inbar,et al.  Rates of fluvial erosion in basins with a Mediterranean type climate , 1992 .

[77]  M. Zreda,et al.  Cosmogenic chlorine-36 production rates in terrestrial rocks: Earth and Planetary Science Letters , 1991 .

[78]  P. Molnar,et al.  Late Cenozoic uplift of mountain ranges and global climate change: chicken or egg? , 1990, Nature.

[79]  M. Zreda,et al.  Cosmogenic Chlorine-36 Chronology for Glacial Deposits at Bloody Canyon, Eastern Sierra Nevada , 1990, Science.

[80]  M. Inbar Landslides in the Upper Jordan Gorge , 1989 .

[81]  S. Schumm Evolution and Response of the Fluvial System, Sedimentologic Implications , 1981 .

[82]  M. Inbar,et al.  Bedload transport associated with high stream power, Jordan River, Israel. , 1979, Proceedings of the National Academy of Sciences of the United States of America.

[83]  S. Schumm,et al.  Time, space, and causality in geomorphology , 1965 .