Analytical and experimental investigation of flexible longitudinal zigzag structures for enhanced multi-directional energy harvesting

This paper makes a complete investigation of flexible longitudinal zigzag (FLZ) energy harvesters for the purpose of enhancing energy harvesting from low-frequency and low-amplitude excitation. A general theoretical model of the FLZ energy harvesters with large joint block mass is proposed. In order to verify the accuracy of the theoretical model, both experimental results and finite element analysis via ANSYS software are presented. Results show that the theoretical model can successfully predict the dynamic response and the output power of the FLZ energy harvesters. Both theoretical and experimental results demonstrate that the proposed energy harvesters can effectively harvest vibration energy even when the direction of excitation relative to the harvester varies from 0° to 90°. Under the low excitation level of 0.18 m s−2, the experimental maximum output power of a FLZ energy harvester with five beams was found to be 1.016 mW. Finally, the results indicate that the proposed structure is capable of effective energy conversion across a large range of excitation angles at low-frequency and low-amplitude excitations, which makes it suitable for a wide range of working conditions.

[1]  Yaowen Yang,et al.  Nonlinear piezomagnetoelastic harvester array for broadband energy harvesting , 2016 .

[2]  Adam M. Wickenheiser,et al.  Eigensolution of piezoelectric energy harvesters with geometric discontinuities: Analytical modeling and validation , 2013 .

[3]  Daniel J. Inman,et al.  Nonlinear dynamic characteristics of variable inclination magnetically coupled piezoelectric energy harvesters , 2015 .

[4]  Ping Li,et al.  Multi-modal vibration energy harvesting utilizing spiral cantilever with magnetic coupling , 2014 .

[5]  Mohammad H. Malakooti,et al.  Piezoelectric energy harvesting through shear mode operation , 2015 .

[6]  Lei Zuo,et al.  Large-scale vibration energy harvesting , 2013 .

[7]  Daniel J. Inman,et al.  Analytical Modeling and Experimental Verification of the Vibrations of the Zigzag Microstructure for Energy Harvesting , 2011 .

[8]  Junyi Cao,et al.  Exploitation of a tristable nonlinear oscillator for improving broadband vibration energy harvesting , 2014 .

[9]  Daniel J. Inman,et al.  A distributed parameter electromechanical and statistical model for energy harvesting from turbulence-induced vibration , 2014 .

[10]  D. Peroulis,et al.  Low-frequency meandering piezoelectric vibration energy harvester , 2012, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[11]  Jan M. Rabaey,et al.  A study of low level vibrations as a power source for wireless sensor nodes , 2003, Comput. Commun..

[12]  Li-Qun Chen,et al.  Snap-through piezoelectric energy harvesting , 2014 .

[13]  D. Inman,et al.  Broadband piezoelectric power generation on high-energy orbits of the bistable Duffing oscillator with electromechanical coupling , 2011 .

[14]  Abdessattar Abdelkefi,et al.  Comparative modeling of low-frequency piezomagnetoelastic energy harvesters , 2014 .

[15]  B. Mann,et al.  Reversible hysteresis for broadband magnetopiezoelastic energy harvesting , 2009 .

[16]  Paul K. Wright,et al.  A piezoelectric vibration based generator for wireless electronics , 2004 .

[17]  Daniel J. Inman,et al.  Impact-induced high-energy orbits of nonlinear energy harvesters , 2015 .

[18]  Mohammed F. Daqaq,et al.  Transduction of a bistable inductive generator driven by white and exponentially correlated Gaussian noise , 2011 .

[19]  Just L. Herder,et al.  Bistable vibration energy harvesters: A review , 2013 .

[20]  Daniel J. Inman,et al.  Powering pacemakers from heartbeat vibrations using linear and nonlinear energy harvesters , 2012 .

[21]  Daniel J. Inman,et al.  Design and modeling of a flexible longitudinal zigzag structure for enhanced vibration energy harvesting , 2017 .

[22]  Ryan L. Harne,et al.  A review of the recent research on vibration energy harvesting via bistable systems , 2013 .

[23]  Daniel J. Inman,et al.  An experimentally validated bimorph cantilever model for piezoelectric energy harvesting from base excitations , 2009 .

[24]  Yaowen Yang,et al.  Toward Broadband Vibration-based Energy Harvesting , 2010 .

[25]  Nadav Cohen,et al.  On the advantage of a bistable energy harvesting oscillator under band-limited stochastic excitation , 2013 .

[26]  Daniel J. Inman,et al.  A survey of control strategies for simultaneous vibration suppression and energy harvesting via piezoceramics , 2012 .

[27]  B. A. Patterson,et al.  ZnO nanowire interfaces for high strength multifunctional composites with embedded energy harvesting , 2016 .

[28]  K. W. Wang,et al.  Bistable energy harvesting enhancement with an auxiliary linear oscillator , 2013 .

[29]  Daniel J. Inman,et al.  Modeling of Piezoelectric Energy Harvesting from an L-shaped Beam-mass Structure with an Application to UAVs , 2009 .

[30]  Junyi Cao,et al.  Broadband tristable energy harvester: Modeling and experiment verification , 2014 .

[31]  Junyi Cao,et al.  Harmonic balance analysis of nonlinear tristable energy harvesters for performance enhancement , 2016 .

[32]  Wei Wang,et al.  Modeling and experimental verification of doubly nonlinear magnet-coupled piezoelectric energy harvesting from ambient vibration , 2015 .

[33]  Pilkee Kim,et al.  Triple-well potential with a uniform depth: Advantageous aspects in designing a multi-stable energy harvester , 2016 .

[34]  D. J. Inman,et al.  Parametric Study of Zigzag Microstructure for Vibrational Energy Harvesting , 2012, Journal of Microelectromechanical Systems.

[35]  M. Amin Karami,et al.  Modeling and experimental verification of a fan-folded vibration energy harvester for leadless pacemakers , 2016 .

[36]  Daniel J. Inman,et al.  Electromechanical Modeling of the Low-Frequency Zigzag Micro-Energy Harvester , 2011 .

[37]  Alper Erturk,et al.  Enhanced broadband piezoelectric energy harvesting using rotatable magnets , 2013 .