A Frame Theoretic Approach to the Nonuniform Fast Fourier Transform
暂无分享,去创建一个
[1] D. Gottlieb,et al. Numerical analysis of spectral methods : theory and applications , 1977 .
[2] O. Christensen,et al. Approximation of the Inverse Frame Operator and Applications to Gabor Frames , 2000 .
[3] Anne Gelb,et al. Edge Detection from Non-Uniform Fourier Data Using the Convolutional Gridding Algorithm , 2014, J. Sci. Comput..
[4] Jeffrey A. Fessler,et al. Nonuniform fast Fourier transforms using min-max interpolation , 2003, IEEE Trans. Signal Process..
[5] J. Benedetto,et al. Irregular sampling and the theory of frames, I , 1990 .
[6] Anne Gelb,et al. Recovering Exponential Accuracy from Non-harmonic Fourier Data Through Spectral Reprojection , 2011, Journal of Scientific Computing.
[7] H. Feichtinger,et al. Irregular sampling theorems and series expansions of band-limited functions , 1992 .
[8] Karsten Fourmont. Non-Equispaced Fast Fourier Transforms with Applications to Tomography , 2003 .
[9] Rosemary A. Renaut,et al. On Reconstruction from Non-uniform Spectral Data , 2010, J. Sci. Comput..
[10] Anne Gelb,et al. Detection of Edges in Spectral Data II. Nonlinear Enhancement , 2000, SIAM J. Numer. Anal..
[11] Anne Gelb,et al. Edge detection from truncated Fourier data using spectral mollifiers , 2013, Adv. Comput. Math..
[12] J. D. O'Sullivan,et al. A Fast Sinc Function Gridding Algorithm for Fourier Inversion in Computer Tomography , 1985, IEEE Transactions on Medical Imaging.
[13] Thomas Strohmer,et al. The finite section method and problems in frame theory , 2005, J. Approx. Theory.
[14] Gabriele Steidl,et al. Fast Fourier Transforms for Nonequispaced Data: A Tutorial , 2001 .
[15] Rosemary A. Renaut,et al. Sparsity Enforcing Edge Detection Method for Blurred and Noisy Fourier data , 2012, J. Sci. Comput..
[16] Daniel Potts,et al. Numerical stability of nonequispaced fast Fourier transforms , 2008 .
[17] Akram Aldroubi,et al. Nonuniform Sampling and Reconstruction in Shift-Invariant Spaces , 2001, SIAM Rev..
[18] Alex Solomonoff,et al. ICASE Report No . 924 ICASE ON THE GIBBS PHENOMENON I : RECOVERING EXPONENTIAL ACCURACY FROM THE FOURIER PARTIAL SUM OF A NON-PERIODIC ANALYTIC FUNCTION , .
[19] T. Strohmer,et al. Efficient numerical methods in non-uniform sampling theory , 1995 .
[20] A. Gelb,et al. Detection of Edges from Nonuniform Fourier Data , 2011 .
[21] Alex Solomonoff,et al. On the Gibbs phenomenon I: recovering exponential accuracy from the Fourier partial sum of a nonperiodic analytic function , 1992 .
[22] Gabriele Steidl. A note on fast Fourier transforms for nonequispaced grids , 1998, Adv. Comput. Math..
[23] Karlheinz Gröchenig,et al. Acceleration of the frame algorithm , 1993, IEEE Trans. Signal Process..
[24] R. Hoge,et al. Density compensation functions for spiral MRI , 1997, Magnetic resonance in medicine.
[25] D. Donoho,et al. Sparse MRI: The application of compressed sensing for rapid MR imaging , 2007, Magnetic resonance in medicine.
[26] A.,et al. FAST FOURIER TRANSFORMS FOR NONEQUISPACED DATA * , .
[27] Thomas Strohmer,et al. Methods for Approximation of the Inverse (Gabor) Frame Operator , 2003 .
[28] Anne Gelb,et al. Approximating the inverse frame operator from localized frames , 2012, 1203.6433.
[29] C. Carilli,et al. Synthesis Imaging in Radio Astronomy II , 1999 .
[31] G. Beylkin. On the Fast Fourier Transform of Functions with Singularities , 1995 .
[32] A. Macovski,et al. Selection of a convolution function for Fourier inversion using gridding [computerised tomography application]. , 1991, IEEE transactions on medical imaging.
[33] John J. Benedetto,et al. Nonuniform sampling and spiral MRI reconstruction , 2000, SPIE Optics + Photonics.
[34] Eitan Tadmor,et al. Filters, mollifiers and the computation of the Gibbs phenomenon , 2007, Acta Numerica.
[35] Anne Gelb,et al. Detection of Edges in Spectral Data , 1999 .
[36] Stefan Kunis,et al. Using NFFT 3---A Software Library for Various Nonequispaced Fast Fourier Transforms , 2009, TOMS.
[37] Hossein Sedarat,et al. On the optimality of the gridding reconstruction algorithm , 2000, IEEE Transactions on Medical Imaging.
[38] O. Christensen. An introduction to frames and Riesz bases , 2002 .
[39] J. Pipe,et al. Sampling density compensation in MRI: Rationale and an iterative numerical solution , 1999, Magnetic resonance in medicine.