A Frame Theoretic Approach to the Nonuniform Fast Fourier Transform

Nonuniform Fourier data are routinely collected in applications such as magnetic resonance imaging, synthetic aperture radar, and synthetic imaging in radio astronomy. To acquire a fast reconstruction that does not require an online inverse process, the nonuniform fast Fourier transform (NFFT), also called convolutional gridding, is frequently employed. While various investigations have led to improvements in accuracy, efficiency, and robustness of the NFFT, not much attention has been paid to the fundamental analysis of the scheme, and in particular its convergence properties. This paper analyzes the convergence of the NFFT by casting it as a Fourier frame approximation. In so doing, we are able to design parameters for the method that satisfy conditions for numerical convergence. Our so-called frame theoretic convolutional gridding algorithm can also be applied to detect features (such as edges) from nonuniform Fourier samples of piecewise smooth functions.

[1]  D. Gottlieb,et al.  Numerical analysis of spectral methods : theory and applications , 1977 .

[2]  O. Christensen,et al.  Approximation of the Inverse Frame Operator and Applications to Gabor Frames , 2000 .

[3]  Anne Gelb,et al.  Edge Detection from Non-Uniform Fourier Data Using the Convolutional Gridding Algorithm , 2014, J. Sci. Comput..

[4]  Jeffrey A. Fessler,et al.  Nonuniform fast Fourier transforms using min-max interpolation , 2003, IEEE Trans. Signal Process..

[5]  J. Benedetto,et al.  Irregular sampling and the theory of frames, I , 1990 .

[6]  Anne Gelb,et al.  Recovering Exponential Accuracy from Non-harmonic Fourier Data Through Spectral Reprojection , 2011, Journal of Scientific Computing.

[7]  H. Feichtinger,et al.  Irregular sampling theorems and series expansions of band-limited functions , 1992 .

[8]  Karsten Fourmont Non-Equispaced Fast Fourier Transforms with Applications to Tomography , 2003 .

[9]  Rosemary A. Renaut,et al.  On Reconstruction from Non-uniform Spectral Data , 2010, J. Sci. Comput..

[10]  Anne Gelb,et al.  Detection of Edges in Spectral Data II. Nonlinear Enhancement , 2000, SIAM J. Numer. Anal..

[11]  Anne Gelb,et al.  Edge detection from truncated Fourier data using spectral mollifiers , 2013, Adv. Comput. Math..

[12]  J. D. O'Sullivan,et al.  A Fast Sinc Function Gridding Algorithm for Fourier Inversion in Computer Tomography , 1985, IEEE Transactions on Medical Imaging.

[13]  Thomas Strohmer,et al.  The finite section method and problems in frame theory , 2005, J. Approx. Theory.

[14]  Gabriele Steidl,et al.  Fast Fourier Transforms for Nonequispaced Data: A Tutorial , 2001 .

[15]  Rosemary A. Renaut,et al.  Sparsity Enforcing Edge Detection Method for Blurred and Noisy Fourier data , 2012, J. Sci. Comput..

[16]  Daniel Potts,et al.  Numerical stability of nonequispaced fast Fourier transforms , 2008 .

[17]  Akram Aldroubi,et al.  Nonuniform Sampling and Reconstruction in Shift-Invariant Spaces , 2001, SIAM Rev..

[18]  Alex Solomonoff,et al.  ICASE Report No . 924 ICASE ON THE GIBBS PHENOMENON I : RECOVERING EXPONENTIAL ACCURACY FROM THE FOURIER PARTIAL SUM OF A NON-PERIODIC ANALYTIC FUNCTION , .

[19]  T. Strohmer,et al.  Efficient numerical methods in non-uniform sampling theory , 1995 .

[20]  A. Gelb,et al.  Detection of Edges from Nonuniform Fourier Data , 2011 .

[21]  Alex Solomonoff,et al.  On the Gibbs phenomenon I: recovering exponential accuracy from the Fourier partial sum of a nonperiodic analytic function , 1992 .

[22]  Gabriele Steidl A note on fast Fourier transforms for nonequispaced grids , 1998, Adv. Comput. Math..

[23]  Karlheinz Gröchenig,et al.  Acceleration of the frame algorithm , 1993, IEEE Trans. Signal Process..

[24]  R. Hoge,et al.  Density compensation functions for spiral MRI , 1997, Magnetic resonance in medicine.

[25]  D. Donoho,et al.  Sparse MRI: The application of compressed sensing for rapid MR imaging , 2007, Magnetic resonance in medicine.

[26]  A.,et al.  FAST FOURIER TRANSFORMS FOR NONEQUISPACED DATA * , .

[27]  Thomas Strohmer,et al.  Methods for Approximation of the Inverse (Gabor) Frame Operator , 2003 .

[28]  Anne Gelb,et al.  Approximating the inverse frame operator from localized frames , 2012, 1203.6433.

[29]  C. Carilli,et al.  Synthesis Imaging in Radio Astronomy II , 1999 .

[31]  G. Beylkin On the Fast Fourier Transform of Functions with Singularities , 1995 .

[32]  A. Macovski,et al.  Selection of a convolution function for Fourier inversion using gridding [computerised tomography application]. , 1991, IEEE transactions on medical imaging.

[33]  John J. Benedetto,et al.  Nonuniform sampling and spiral MRI reconstruction , 2000, SPIE Optics + Photonics.

[34]  Eitan Tadmor,et al.  Filters, mollifiers and the computation of the Gibbs phenomenon , 2007, Acta Numerica.

[35]  Anne Gelb,et al.  Detection of Edges in Spectral Data , 1999 .

[36]  Stefan Kunis,et al.  Using NFFT 3---A Software Library for Various Nonequispaced Fast Fourier Transforms , 2009, TOMS.

[37]  Hossein Sedarat,et al.  On the optimality of the gridding reconstruction algorithm , 2000, IEEE Transactions on Medical Imaging.

[38]  O. Christensen An introduction to frames and Riesz bases , 2002 .

[39]  J. Pipe,et al.  Sampling density compensation in MRI: Rationale and an iterative numerical solution , 1999, Magnetic resonance in medicine.