Overview of aluminum alloy mechanical properties during and after fires

Aluminum alloys are increasingly being used in a broad spectrum of load-bearing applications such as lightweight structures, light rail, bridge decks, marine crafts, and off-shore platforms. A major concern in the design of land-based and marine aluminum structures is fire safety, at least in part due to mechanical property reduction at temperatures significantly lower than that for steel. A substantial concern also exists regarding the integrity and stability of an aluminum structure following a fire; however, little research has been reported on this topic. This paper provides a broad overview of the mechanical behavior of aluminum alloys both during and following fire. The two aluminum alloys discussed in this work, 5083-H116 and 6061-T651, were selected due to their prevalence as lightweight structural alloys and their differing strengthening mechanisms (5083 – strain hardened, 6061 – precipitation hardened). The high temperature quasi-static mechanical and creep behavior are discussed. A creep model is presented to predict the secondary and tertiary creep strains followed by creep rupture. The residual mechanical behavior following fire (with and without applied stress) is elucidated in terms of the governing kinetically-dependent microstructural mechanisms. A review is provided on modeling techniques for residual mechanical behavior following fire including empirical relations, physically-based constitutive models, and finite element implementations. The principal objective is to provide a comprehensive description of select aluminum alloys, 5083-H116 and 6061-T651, to aid design and analysis of aluminum structures during and after fire.

[1]  F. Mazzolani,et al.  Behaviour of aluminium alloy structures under fire , 2004 .

[2]  D. Fabrègue,et al.  Multiscale Analysis of the Strength and Ductility of AA 6056 Aluminum Friction Stir Welds , 2007 .

[3]  Yuri Estrin,et al.  2 – Dislocation-Density–Related Constitutive Modeling , 1996 .

[4]  N. Hansen,et al.  Subgrain coalescence and the nucleation of recrystallization at grain boundaries in aluminium , 1979, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[5]  J Johan Maljaars,et al.  Local buckling of aluminium structures exposed to fire. Part 1: Tests , 2009 .

[6]  P. Houtte,et al.  A new way to include the grain shape in texture simulations with the Taylor model , 1985 .

[7]  W. Nix,et al.  The kinetics of cavity growth and creep fracture in silver containing implanted grain boundary cavities , 1978 .

[8]  B. Lattimer,et al.  Residual mechanical properties of aluminum alloys AA5083-H116 and AA6061-T651 after fire , 2014 .

[9]  F. Barlat,et al.  A simple model for dislocation behavior, strain and strain rate hardening evolution in deforming aluminum alloys , 2002 .

[10]  N. Hansen,et al.  Initial stages of recrystallization in aluminum of commercial purity , 1979 .

[11]  M. E. Kassner,et al.  Creep cavitation in metals , 2003 .

[12]  W. A. Johnson Reaction Kinetics in Processes of Nucleation and Growth , 1939 .

[13]  K. T. Ramesh,et al.  Strengthening mechanisms in an Al–Mg alloy , 2010 .

[14]  Michael F. Ashby,et al.  Intergranular fracture at elevated temperature , 1975 .

[15]  E. Nes,et al.  Strengthening mechanisms in solid solution aluminum alloys , 2006 .

[16]  Michel Perez,et al.  Implementation of classical nucleation and growth theories for precipitation , 2008 .

[17]  H. Last,et al.  Mechanical behavior and properties of mechanically alloyed aluminum alloys , 1996 .

[18]  P. Anderson,et al.  Stress redistribution and cavity nucleation near a diffusively growing grain boundary cavity , 2000 .

[19]  A. Almajid,et al.  Hot deformation of AA6082-T4 aluminum alloy , 2008, Journal of Materials Science.

[20]  U. F. Kocks Laws for Work-Hardening and Low-Temperature Creep , 1976 .

[21]  F. J. Humphreys,et al.  Measurements of grain boundary mobility during recrystallization of a single-phase aluminium alloy , 1999 .

[22]  Y. Bréchet,et al.  Microstructural evolution during recovery in Al–2.5%Mg alloys , 1998 .

[23]  J. Embury,et al.  The influence of precipitation on the work-hardening behavior of the aluminum alloys AA6111 and AA7030 , 2003 .

[24]  J. Greenwood,et al.  Intergranular cavitation in stressed metals , 1954 .

[25]  Frank P. Incropera,et al.  Fundamentals of Heat and Mass Transfer , 1981 .

[26]  R. Wagner,et al.  KINETICS OF PRECIPITATION IN METASTABLE BINARY ALLOYS -THEORY AND APPLICATION TO Cu-1.9 at % Ti AND Ni-14 at % Al , 1984 .

[27]  Y. Bréchet,et al.  Recovery of AlMg alloys: Flow stress and strain-hardening properties , 1998 .

[28]  K. Krausz,et al.  Unified constitutive laws of plastic deformation , 1996 .

[29]  U. F. Kocks,et al.  Thermal recovery processes in deformed aluminum , 1979 .

[30]  Yuri Estrin,et al.  A unified phenomenological description of work hardening and creep based on one-parameter models , 1984 .

[31]  Ahmed Benallal,et al.  Flow and fracture characteristics of aluminium alloy AA5083–H116 as function of strain rate, temperature and triaxiality , 2004 .

[32]  Thomas Pardoen,et al.  Microstructure, local and global mechanical properties of friction stir welds in aluminium alloy 6005A-T6 , 2008 .

[33]  Yanyun Chen,et al.  Stress-induced Damage and Post-fire Response of Aluminum Alloys , 2014 .

[34]  Ø. Grong,et al.  Process modelling applied to 6082-T6 aluminium weldments—II. Applications of model , 1991 .

[35]  A. Deschamps,et al.  Coupled precipitation and yield strength modelling for non-isothermal treatments of a 6061 aluminium alloy , 2014 .

[36]  E. Astm Standard test method for thermal diffusivity of solids by the flash method , 1992 .

[37]  N. Hansen,et al.  Recovery of heavily cold-rolled aluminum: Effect of local texture , 2006 .

[38]  F. J. Humphreys,et al.  The effect of solutes on grain boundary mobility during recrystallization and grain growth in some single-phase aluminium alloys , 2012 .

[39]  F. A. Leckie,et al.  Creep problems in structural members , 1969 .

[40]  Gaurav Agarwal,et al.  Method for measuring the standard heat of decomposition of materials , 2012 .

[41]  A. Faleiros,et al.  Kinetics of phase change , 2000 .

[42]  Trevor A. Dean,et al.  A Review on Damage Mechanisms, Models and Calibration Methods under Various Deformation Conditions , 2005 .

[43]  M. F. Ashby,et al.  Creep fracture by coupled power-law creep and diffusion under multiaxial stress , 1982 .

[44]  F. Mazzolani Aluminium Alloy Structures , 1985 .

[45]  A. Deschamps,et al.  Low-temperature dynamic precipitation in a supersaturated Al± Zn± Mg alloy and related strain hardening , 1999 .

[46]  E. Romhanji,et al.  Characterization of microstructural changes in an Al-6.8 wt.% Mg alloy by electrical resistivity measurements , 2008 .

[47]  M. Avrami Kinetics of Phase Change. I General Theory , 1939 .

[48]  L. Kachanov,et al.  Rupture Time Under Creep Conditions , 1999 .

[49]  D. Lloyd,et al.  Characterization of the evolution of the volume fraction of precipitates in aged AlMgSiCu alloys using DSC technique , 2005 .

[50]  V. Sundararaghavan,et al.  A probabilistic crystal plasticity model for modeling grain shape effects based on slip geometry , 2012 .

[51]  Øystein Grong,et al.  Modelling of non-isothermal transformations in alloys containing a particle distribution , 2000 .

[52]  Ø. Grong,et al.  Process modelling applied to 6082-T6 aluminium weldments—I. Reaction kinetics , 1991 .

[53]  M. A. Gaffar,et al.  Investigation of developed precipitates in Al–1·1 wt-%Mg2Si balanced alloy by DSC and SEM techniques , 2006 .

[54]  J. Maljaars,et al.  Fire exposed aluminium structures , 2005 .

[55]  M. Starink,et al.  A Model for Precipitation Kinetics and Strengthening in Al-Cu-Mg Alloys , 2008 .

[56]  H. Fujita,et al.  The effect of grain size and deformation sub-structure on mechanical properties of polycrystalline aluminum , 1973 .

[57]  M. Yoo,et al.  Nucleation under time-dependent supersaturation , 1987 .

[58]  J. S. Wang Statistical Theory of Superlattices with Long-Range Interaction. I. General Theory , 1938 .

[59]  D. Lloyd,et al.  Modelling the Stress-Strain Behaviour for Aluminum Alloy AA 6111 , 2004 .

[60]  M. E. Kassner,et al.  Current issues in recrystallization: a review , 1997 .

[61]  Y. Bréchet,et al.  Sequential modeling of local precipitation, strength and strain hardening in friction stir welds of an aluminum alloy 6005A-T6 , 2007 .

[62]  U. F. Kocks,et al.  Physics and phenomenology of strain hardening: the FCC case , 2003 .

[63]  M. Suéry,et al.  Effects of heat treatments on the microstructure and mechanical properties of a 6061 aluminium alloy , 2011 .

[64]  J Johan Maljaars,et al.  Local buckling of aluminium structures exposed to fire. Part 2: Finite element models , 2009 .

[65]  E. Evangelista,et al.  Serrated grain boundaries in hot-worked aluminum alloys at high strains , 1995 .

[66]  Hugh Shercliff,et al.  Microstructural modelling in metals processing , 2002 .

[67]  U. F. Kocks,et al.  Kinetics of flow and strain-hardening☆ , 1981 .

[68]  N. Hansen,et al.  Recrystallization in Commercially Pure Aluminum , 1984 .

[69]  D. Juul Jensen,et al.  Microstructural path and temperature dependence of recrystallization in commercial aluminum , 2001 .

[70]  Y. Bréchet,et al.  Precipitation microstructures in an AA6056 aluminium alloy after friction stir welding: Characterisation and modelling , 2008 .

[71]  Jørgen Amdahl,et al.  Experimental And Numerical Analysis of Aluminium Columns Subjected to Fire , 2001 .

[72]  J. Kaufman Introduction to Aluminum Alloys and Tempers , 2000 .

[73]  D. Lloyd,et al.  Precipitation hardening processes in an Al–0.4%Mg–1.3%Si–0.25%Fe aluminum alloy , 2001 .

[74]  Øystein Grong,et al.  Modelling of the age hardening behaviour of Al–Mg–Si alloys , 2001 .

[75]  Hugh Shercliff,et al.  Overview No. 124 Modelling of precipitation reactions in industrial processing , 1997 .

[76]  J. Hancock Creep cavitation without a vacancy flux , 1976 .

[77]  H. Evans Mechanisms of creep fracture , 1984 .

[78]  H. Fjaer,et al.  Modelling of the microstructure and strength evolution in Al–Mg–Si alloys during multistage thermal processing , 2004 .

[79]  J Johan Maljaars,et al.  Constitutive Model for Aluminum Alloys Exposed to Fire Conditions , 2008 .

[80]  W. Wen,et al.  An investigation of serrated yielding in 5000 series aluminum alloys , 2003 .

[81]  A. Abdel-azim Fundamentals of Heat and Mass Transfer , 2011 .

[82]  Shreyes N. Melkote,et al.  A unified internal state variable material model for inelastic deformation and microstructure evolution in SS304 , 2014 .

[83]  A. Deschamps,et al.  Influence of predeformation and agEing of an Al–Zn–Mg alloy—II. Modeling of precipitation kinetics and yield stress , 1998 .

[84]  F. A. Leckie,et al.  On the creep rupture of structures , 1972 .

[85]  A. Deschamps,et al.  Characterisation and modelling of precipitate evolution in an Al–Zn–Mg alloy during non-isothermal heat treatments , 2003 .

[86]  D. Hull,et al.  The growth of grain-boundary voids under stress , 1959 .

[87]  P. Summers Microstructure-based Constitutive Models for Residual Mechanical Behavior of Aluminum Alloys after Fire Exposure , 2014 .

[88]  K. Bowman Mechanical Behavior of Materials , 2003 .

[89]  E. Nes,et al.  Subgrain growth in heavily deformed aluminium—experimental investigation and modelling treatment , 1995 .

[90]  K. Chawla,et al.  Mechanical Behavior of Materials , 1998 .

[91]  N. Hansen,et al.  Recovery kinetics of nanostructured aluminum: Model and experiment , 2008 .

[92]  G. A. Edwards,et al.  The precipitation sequence in Al–Mg–Si alloys , 1998 .

[93]  I-Wei Chen,et al.  Mechanisms of cavity growth in creep , 1983 .

[94]  K. Harada,et al.  Evaluation of Fire Resistance of Aluminum Alloy Members , 2005 .

[95]  Kiyomichi Nakai,et al.  Precipitation and dissolution reactions in a 6061 Aluminum Alloy , 2000 .

[96]  M. Yoo,et al.  Interaction of slip with grain boundary and its role in cavity nucleation , 1986 .

[97]  J. Sietsma,et al.  An Age-Hardening Model for Al-Mg-Si Alloys Considering Needle-Shaped Precipitates , 2012, Metallurgical and Materials Transactions A.

[98]  Brian Y. Lattimer,et al.  Larson–Miller Failure Modeling of Aluminum in Fire , 2010 .

[99]  Ryan Douglas Matulich,et al.  Post-fire Mechanical Properties of Aluminum Alloys and Aluminum Welds , 2011 .