Monolithic lithium niobate photonic circuits for Kerr frequency comb generation and modulation

Microresonator Kerr frequency combs could provide miniaturised solutions for a wide range of applications. Many of these applications however require further manipulation of the generated frequency comb signal using photonic elements with strong second-order nonlinearity (χ(2)). To date these functionalities have largely been implemented as discrete components due to material limitations, which comes at the expense of extra system complexity and increased optical losses. Here we demonstrate the generation, filtering and electro-optic modulation of a frequency comb on a single monolithic integrated chip, using a nanophotonic lithium-niobate platform that simultaneously possesses large electro-optic (χ(2)) and Kerr (χ(3)) nonlinearities, and low optical losses. We generate broadband Kerr frequency combs using a dispersion-engineered high-Q lithium-niobate microresonator, select a single comb line using an electrically programmable add-drop filter, and modulate the intensity of the selected line. Our results pave the way towards monolithic integrated frequency comb solutions for spectroscopy, data communication, ranging and quantum photonics.Kerr microcombs promise the miniaturization of frequency comb sources, but many applications require additional second-order nonlinearities. Here, Wang et al. demonstrate that comb generation and second-order functionalities can be monolithically integrated on a single lithium niobate chip.

[1]  Q. Lin,et al.  Dispersion-engineered high quality lithium niobate microring resonators , 2018, 2018 Conference on Lasers and Electro-Optics (CLEO).

[2]  H. Thienpont,et al.  Directional Coupler Based on Single-Crystal Diamond Waveguides , 2018, IEEE Journal of Selected Topics in Quantum Electronics.

[3]  D. Nikogosyan,et al.  Nonlinear Optical Crystals: A Complete Survey , 2005 .

[4]  Arnan Mitchell,et al.  Status and Potential of Lithium Niobate on Insulator (LNOI) for Photonic Integrated Circuits , 2018 .

[5]  E. Semenova,et al.  Efficient frequency comb generation in AlGaAs-on-insulator , 2016 .

[6]  Michal Lipson,et al.  Nanophotonic lithium niobate electro-optic modulators. , 2017, Optics express.

[7]  Kerry J. Vahala,et al.  Microresonator soliton dual-comb spectroscopy , 2016, Science.

[8]  Miles H. Anderson,et al.  Microresonator-based solitons for massively parallel coherent optical communications , 2016, Nature.

[9]  C. Koos,et al.  Ultrafast optical ranging using microresonator soliton frequency combs , 2017, Science.

[10]  Michal Lipson,et al.  Silicon-chip mid-infrared frequency comb generation , 2014, Nature Communications.

[11]  Mansoor Sheik-Bahae,et al.  Infrared to ultraviolet measurements of two-photon absorption and n/sub 2/ in wide bandgap solids , 1996 .

[12]  David J. Thomson,et al.  Silicon optical modulators , 2010 .

[13]  Daniele Rezzonico,et al.  Electro–optically tunable microring resonators in lithium niobate , 2007, 0705.2392.

[14]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[15]  K. Vahala,et al.  Kerr-nonlinearity optical parametric oscillation in an ultrahigh-Q toroid microcavity. , 2004, Physical review letters.

[16]  J. Dadap,et al.  Micro-Raman spectroscopic visualization of lattice vibrations and strain in He + - implanted single-crystal LiNbO 3 , 2014 .

[17]  Michal Lipson,et al.  On-chip dual-comb source for spectroscopy , 2016, Science Advances.

[18]  J. Ye,et al.  Femtosecond Optical Frequency Comb: Principle, Operation and Applications , 2010 .

[19]  M. Gorodetsky,et al.  Temporal solitons in optical microresonators , 2012, Nature Photonics.

[20]  T. Kippenberg,et al.  Microresonator-Based Optical Frequency Combs , 2011, Science.

[21]  K. Vahala,et al.  Soliton microcomb range measurement , 2017, Science.

[22]  Carsten Langrock,et al.  Supercontinuum generation in quasi-phasematched waveguides. , 2011, Optics express.

[23]  Q. Lin,et al.  High-quality lithium niobate photonic crystal nanocavities , 2017, 1706.08904.

[24]  Marko Loncar,et al.  Diamond nonlinear photonics , 2014, Nature Photonics.

[25]  Xiang Guo,et al.  Green, red, and IR frequency comb line generation from single IR pump in AlN microring resonator , 2014 .

[26]  Ingo Breunig,et al.  Cascaded second-order optical nonlinearities in on-chip micro rings. , 2017, Optics express.

[27]  Marko Loncar,et al.  Monolithic ultra-high-Q lithium niobate microring resonator , 2017, 1712.04479.

[28]  M. Lipson,et al.  Competition between Raman and Kerr effects in microresonator comb generation. , 2017, Optics letters.

[29]  A. Weiner,et al.  Spectral line-by-line pulse shaping of an on-chip microresonator frequency comb , 2011, CLEO: 2011 - Laser Science to Photonic Applications.

[30]  Luke Theogarajan,et al.  An optical-frequency synthesizer using integrated photonics , 2018, Nature.

[31]  E. Semenova,et al.  AlGaAs-On-Insulator Nonlinear Photonics , 2015, 1509.03620.

[32]  F. Xia,et al.  Ultra-compact high order ring resonator filters using submicron silicon photonic wires for on-chip optical interconnects. , 2007, Optics express.

[33]  P. Winzer,et al.  Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages , 2018, Nature.

[34]  T. Hänsch,et al.  Optical frequency metrology , 2002, Nature.

[35]  S. Chu,et al.  Generation of multiphoton entangled quantum states by means of integrated frequency combs , 2016, Science.

[36]  Chi Xiong,et al.  Electrical tuning and switching of an optical frequency comb generated in aluminum nitride microring resonators. , 2014, Optics letters.

[37]  M. Gorodetsky,et al.  Frequency comb assisted diode laser spectroscopy for measurement of microcavity dispersion , 2009, 0907.0143.

[38]  Lute Maleki,et al.  Nonlinear optics and crystalline whispering gallery mode cavities. , 2004, Physical review letters.

[39]  Steven A. Miller,et al.  Tunable frequency combs based on dual microring resonators , 2015, 2015 Conference on Lasers and Electro-Optics (CLEO).

[40]  Michal Lipson,et al.  Octave-spanning frequency comb generation in a silicon nitride chip. , 2011, Optics letters.

[41]  K. Vahala,et al.  Microresonator frequency comb optical clock , 2013, 1309.3525.

[42]  Zin Lin,et al.  Integrated high quality factor lithium niobate microdisk resonators. , 2014, Optics express.

[43]  Junjie Li,et al.  High-Q lithium niobate microdisk resonators on a chip for efficient electro-optic modulation. , 2015, Optics express.

[44]  Luke Theogarajan,et al.  An optical-frequency synthesizer using integrated photonics , 2017, Nature.

[45]  Sasan Fathpour,et al.  Heterogeneous Thin-Film Lithium Niobate Integrated Photonics for Electrooptics and Nonlinear Optics , 2018, IEEE Journal of Selected Topics in Quantum Electronics.