Sparse Adaptive Filters for Echo Cancellation

Abstract Adaptive filters with a large number of coefficients are usually involved in both network and acoustic echo cancellation. Consequently, it is important to improve the convergence rate and tracking of the conventional algorithms used for these applications. This can be achieved by exploiting the sparseness character of the echo paths. Identification of sparse impulse responses was addressed mainly in the last decade with the development of the so-called ``proportionate''-type algorithms. The goal of this book is to present the most important sparse adaptive filters developed for echo cancellation. Besides a comprehensive review of the basic proportionate-type algorithms, we also present some of the latest developments in the field and propose some new solutions for further performance improvement, e.g., variable step-size versions and novel proportionate-type affine projection algorithms. An experimental study is also provided in order to compare many sparse adaptive filters in different echo canc...

[1]  David L Donoho,et al.  Compressed sensing , 2006, IEEE Transactions on Information Theory.

[2]  Akihiko Sugiyama,et al.  A generalized proportionate variable step-size algorithm for fast changing acoustic environments , 2004, 2004 IEEE International Conference on Acoustics, Speech, and Signal Processing.

[3]  Neil J. Bershad On the optimum data nonlinearity in LMS adaptation , 1986, IEEE Trans. Acoust. Speech Signal Process..

[4]  E. Hänsler,et al.  Acoustic Echo and Noise Control: A Practical Approach , 2004 .

[5]  Scott C. Douglas,et al.  Normalized natural gradient adaptive filtering for sparse and non-sparse systems , 2002, 2002 IEEE International Conference on Acoustics, Speech, and Signal Processing.

[6]  C. Richard Johnson,et al.  Exploiting sparsity in adaptive filters , 2002, IEEE Trans. Signal Process..

[7]  Francisco das Chagas de Souza,et al.  A PNLMS Algorithm With Individual Activation Factors , 2010, IEEE Transactions on Signal Processing.

[8]  Jacob Benesty,et al.  A Variable Step-Size Affine Projection Algorithm Designed for Acoustic Echo Cancellation , 2008, IEEE Transactions on Audio, Speech, and Language Processing.

[9]  Ligang Liu,et al.  A variable parameter improved proportionate normalized LMS algorithm , 2008, APCCAS 2008 - 2008 IEEE Asia Pacific Conference on Circuits and Systems.

[10]  Jacob Benesty,et al.  An Efficient Proportionate Affine Projection Algorithm for Echo Cancellation , 2010, IEEE Signal Processing Letters.

[11]  Norbert Wiener,et al.  Extrapolation, Interpolation, and Smoothing of Stationary Time Series , 1964 .

[12]  Shirish Nagaraj,et al.  Set-membership filtering and a set-membership normalized LMS algorithm with an adaptive step size , 1998, IEEE Signal Processing Letters.

[13]  Ali H. Sayed,et al.  Variable step-size NLMS and affine projection algorithms , 2004, IEEE Signal Processing Letters.

[14]  Maria Hansson,et al.  A double-talk detector based on coherence , 1996, IEEE Trans. Commun..

[15]  Dennis R. Morgan,et al.  On a class of computationally efficient, rapidly converging, generalized NLMS algorithms , 1996, IEEE Signal Processing Letters.

[16]  Takatoshi Okuno,et al.  Adaptive Cross-Spectral Technique for Acoustic Echo Cancellation (Special Section on Advanced Signal Processing Techniques for Analysis of Acoustical and Vibrational Signals) , 1999 .

[17]  Tyseer Aboulnasr,et al.  A robust variable step-size LMS-type algorithm: analysis and simulations , 1997, IEEE Trans. Signal Process..

[18]  Donald L. Duttweiler,et al.  A Twelve-Channel Digital Echo Canceler , 1978, IEEE Trans. Commun..

[19]  Jacob Benesty,et al.  Variable Step-Size NLMS Algorithm for Under-Modeling Acoustic Echo Cancellation , 2008, IEEE Signal Processing Letters.

[20]  Ii Leon W. Couch Digital and analog communication systems , 1983 .

[21]  T. Claasen,et al.  Comparison of the convergence of two algorithms for adaptive FIR digital filters , 1981 .

[22]  Ping Xue,et al.  Analysis and implementation of variable step size adaptive algorithms , 1993, IEEE Trans. Signal Process..

[23]  Jacob Benesty,et al.  A Nonparametric VSS NLMS Algorithm , 2006, IEEE Signal Processing Letters.

[24]  V. John Mathews,et al.  A stochastic gradient adaptive filter with gradient adaptive step size , 1993, IEEE Trans. Signal Process..

[25]  Raymond H. Kwong,et al.  A variable step size LMS algorithm , 1992, IEEE Trans. Signal Process..

[26]  Ehud Weinstein,et al.  Convergence analysis of LMS filters with uncorrelated Gaussian data , 1985, IEEE Trans. Acoust. Speech Signal Process..

[27]  Yuantao Gu,et al.  $l_{0}$ Norm Constraint LMS Algorithm for Sparse System Identification , 2009, IEEE Signal Processing Letters.

[28]  Kevin T. Wagner,et al.  Gain allocation in proportionate-type NLMS algorithms for fast decay of output error at all times , 2009, 2009 IEEE International Conference on Acoustics, Speech and Signal Processing.

[29]  T. Tozer,et al.  Multiplication-free iterative algorithm for LS problem , 2004 .

[30]  Jacob Benesty,et al.  A new class of doubletalk detectors based on cross-correlation , 2000, IEEE Trans. Speech Audio Process..

[31]  Jacob Benesty,et al.  The LMS, PNLMS, and exponentiated gradient algorithms , 2004, 2004 12th European Signal Processing Conference.

[32]  Shoji Makino,et al.  A Fast Projection Algorithm for Adaptive Filtering , 1995 .

[33]  Brian D. Jeffs,et al.  Restoration of blurred star field images by maximally sparse optimization , 1993, IEEE Trans. Image Process..

[34]  Shoji Makino,et al.  Exponentially weighted stepsize NLMS adaptive filter based on the statistics of a room impulse response , 1993, IEEE Trans. Speech Audio Process..

[35]  Bernard Widrow,et al.  Adaptive switching circuits , 1988 .

[36]  Manfred K. Warmuth,et al.  Exponentiated Gradient Versus Gradient Descent for Linear Predictors , 1997, Inf. Comput..

[37]  Iven M. Y. Mareels,et al.  LMS estimation via structural detection , 1998, IEEE Trans. Signal Process..

[38]  Isao Yamada,et al.  A sparse adaptive filtering using time-varying soft-thresholding techniques , 2010, 2010 IEEE International Conference on Acoustics, Speech and Signal Processing.

[39]  Jacob Benesty,et al.  A robust variable step-size affine projection algorithm , 2010, Signal Process..

[40]  Jacob Benesty,et al.  An improved proportionate NLMS algorithm based on the l0 norm , 2010, 2010 IEEE International Conference on Acoustics, Speech and Signal Processing.

[41]  Henning Puder,et al.  Step-size control for acoustic echo cancellation filters - an overview , 2000, Signal Process..

[42]  Yuriy V. Zakharov,et al.  Low-Complexity Implementation of the Affine Projection Algorithm , 2008, IEEE Signal Processing Letters.

[43]  Milos Doroslovacki,et al.  Improving convergence of the PNLMS algorithm for sparse impulse response identification , 2005, IEEE Signal Processing Letters.

[44]  Peter J. Huber,et al.  Robust Statistics , 2005, Wiley Series in Probability and Statistics.

[45]  Robert C. Williamson,et al.  Convergence of exponentiated gradient algorithms , 2001, IEEE Trans. Signal Process..

[46]  Richard W. Harris,et al.  A variable step (VS) adaptive filter algorithm , 1986, IEEE Trans. Acoust. Speech Signal Process..

[47]  Patrick A. Naylor,et al.  A Class of Sparseness-Controlled Algorithms for Echo Cancellation , 2009, IEEE Transactions on Audio, Speech, and Language Processing.

[48]  Jacob Benesty,et al.  Variable Explicit Regularization in Affine Projection Algorithm: Robustness Issues and Optimal Choice , 2007, IEEE Transactions on Signal Processing.

[49]  Anthony G. Constantinides,et al.  A novel kurtosis driven variable step-size adaptive algorithm , 1999, IEEE Trans. Signal Process..

[50]  Milos Doroslovacki,et al.  Proportionate adaptive algorithms for network echo cancellation , 2006, IEEE Transactions on Signal Processing.

[51]  A. A. Beex,et al.  Convergence behavior of affine projection algorithms , 2000, IEEE Trans. Signal Process..

[52]  Jacob Benesty,et al.  On a Class of Exponentiated Adaptive Algorithms for the Identification of Sparse Impulse Responses , 2003 .

[53]  Jacob Benesty,et al.  A better understanding and an improved solution to the specific problems of stereophonic acoustic echo cancellation , 1998, IEEE Trans. Speech Audio Process..

[54]  Donald L. Duttweiler,et al.  Proportionate normalized least-mean-squares adaptation in echo cancelers , 2000, IEEE Trans. Speech Audio Process..

[55]  Steven L. Gay,et al.  The fast affine projection algorithm , 1995, 1995 International Conference on Acoustics, Speech, and Signal Processing.

[56]  Peter Vary,et al.  ROBUST AND ELEGANT, PURELY STATISTICAL ADAPTATION OF ACOUSTIC ECHO CANCELER AND POSTFILTER , 2003 .

[57]  Akihiko Sugiyama,et al.  A fast convergence algorithm for adaptive FIR filters under computational constraint for adaptive tap-position control , 1996 .

[58]  Allen Gersho,et al.  Adaptive filtering with binary reinforcement , 1984, IEEE Trans. Inf. Theory.

[59]  Bhaskar D. Rao,et al.  An affine scaling methodology for best basis selection , 1999, IEEE Trans. Signal Process..

[60]  Kazuhiko Ozeki,et al.  An adaptive filtering algorithm using an orthogonal projection to an affine subspace and its properties , 1984 .

[61]  J. L. Hall,et al.  Stereophonic acoustic echo cancellation-an overview of the fundamental problem , 1995, IEEE Signal Processing Letters.

[62]  Arie Molendijk,et al.  In hoc signo vinces , 2003 .

[63]  Jacob Benesty,et al.  A Family of Robust Algorithms Exploiting Sparsity in Adaptive Filters , 2009, IEEE Transactions on Audio, Speech, and Language Processing.