Correspondence between neutron depolarization and higher order magnetic susceptibility to investigate ferromagnetic clusters in phase separated systems

It is a tough task to distinguish a short-range ferromagnetically correlated cluster-glass phase from a canonical spin-glass-like phase in many magnetic oxide systems using conventional magnetometry measurements. As a case study, we investigate the magnetic ground state of La0.85Sr0.15CoO3, which is often debated based on phase separation issues. We report the results of two samples of La0.85Sr0.15CoO3 (S-1 and S-2) prepared under different conditions. Neutron depolarization, higher harmonic ac susceptibility and magnetic relaxation studies were carried out along with conventional magnetometry measurements to differentiate subtle changes at the microscopic level. There is no evidence of ferromagnetic correlation in the sample S-2 attributed to a spin-glass phase, and this is compounded by the lack of existence of a second order component of higher harmonic ac susceptibility and neutron depolarization. A magnetic relaxation experiment at different temperatures complements the spin glass characteristic in S-2. All these signal a sharp variance when we consider the cluster-glass-like phase (phase separated) in S-1, especially when prepared from an improper chemical synthesis process. This shows that the nonlinear ac susceptibility is a viable tool to detect ferromagnetic clusters such as those the neutron depolarization study can reveal.

[1]  Du Jun,et al.  Exchange bias in ferromagnet/antiferromagnet bilayers , 2014 .

[2]  S. Elizabeth,et al.  Tuning the ferromagnetic transition temperature in La0.5Sr0.5CoO3 thin films , 2013 .

[3]  P. Kumar,et al.  Investigation of the origin of glassiness in La0.5Sr0.5CoO3 , 2013 .

[4]  S. Elizabeth,et al.  Magnetic and transport relaxation property of La0.85Sr0.15CoO3 single crystals , 2013 .

[5]  D. Samal,et al.  Time evolution of resistance in response to magnetic field: Evidence of glassy transport in La0.85Sr0.15CoO3 , 2012 .

[6]  Amit Kumar,et al.  Crossover from antiferromagnetic to ferromagnetic ordering in the semi-Heusler alloys Cu 1-x Ni x MnSb with increasing Ni concentration , 2011, 1206.2243.

[7]  S. Elizabeth,et al.  On the Magnetic Ground State of La0.85Sr0.15CoO3 Single Crystals , 2011 .

[8]  P. A. Anil Kumar,et al.  A critical re-examination and a revised phase diagram of La1 − xSrxCoO3 , 2011, Journal of physics. Condensed matter : an Institute of Physics journal.

[9]  Guntae Kim,et al.  Electrochemical Properties of Nanocrystalline La0.5Sr0.5CoO3−x Thin Films† , 2010 .

[10]  C. Shivakumara,et al.  The incongruous observation of magnetic phase separation in La0.85Sr0.15CoO3 spin glass system , 2009 .

[11]  J. Mitchell,et al.  Non-Griffiths-like clustered phase above the Curie temperature of the doped perovskite cobaltite La{sub x-1}Sr{sub x}CoO{sub 3}. , 2007 .

[12]  H. R. Krishnamurthy,et al.  Coulomb interactions and nanoscale electronic inhomogeneities in manganites. , 2006, Physical review letters.

[13]  Young Sun,et al.  Glassy magnetic behavior in the phase-separated perovskite cobaltites , 2006 .

[14]  J. Mitchell,et al.  Glassy transport phenomena in a phase-separated perovskite cobaltite , 2006 .

[15]  J. Mitchell,et al.  Nanomagnetic droplets and implications to orbital ordering in LA(1-x)Sr(x)CoO3. , 2005, Physical review letters.

[16]  F. Luis,et al.  Nonlinear response of single-molecule nanomagnets : Equilibrium and dynamical , 2005, cond-mat/0508284.

[17]  J. Mitchell,et al.  Intergranular giant magnetoresistance in a spontaneously phase separated perovskite oxide. , 2005, Physical review letters.

[18]  M. Hoch,et al.  Evolution of the ferromagnetic and nonferromagnetic phases with temperature in phase-separated La 1 − x Sr x CoO 3 by high-field La 139 NMR , 2004 .

[19]  J. Rivas,et al.  Origin of the glassy magnetic behavior of the phase segregated state of the perovskites. , 2004, Physical review letters.

[20]  M. Kriener,et al.  Structure, magnetization, and resistivity of La 1 − x M x CoO 3 ( M = Ca , Sr, and Ba) , 2004, cond-mat/0401400.

[21]  S. K. Paranjpe,et al.  Magnetic and electrical properties of(La1−xDyx)0.7Ca0.3MnO3perovskites , 2003 .

[22]  M. Hoch,et al.  Magnetic phase separation in La1-xSrxCoO3 by 59Co nuclear magnetic resonance. , 2003, Physical review letters.

[23]  S. Cardoso,et al.  Relaxation and aging of a superferromagnetic domain state , 2003 .

[24]  J. Sarrao,et al.  Dynamical disorder of spin-induced Jahn-Teller orbitals with the insulator-metal transition in cobaltites. , 2003, Physical review letters.

[25]  C. Leighton,et al.  Glassy ferromagnetism and magnetic phase separation in La1-xSrxCoO3 , 2003 .

[26]  A. Bunde,et al.  Slow relaxation in ferromagnetic nanoparticles: Indication of spin-glass behavior , 2003 .

[27]  U. Rößler,et al.  Effect of Ga doping for Mn on the magnetic properties of La0.67Ca0.33MnO3 , 2002 .

[28]  T. Roisnel,et al.  WinPLOTR: A Windows Tool for Powder Diffraction Pattern Analysis , 2001 .

[29]  J. Luitz,et al.  Itinerant metamagnetism and possible spin transition in LaCoO3 by temperature/hole doping , 2001, cond-mat/0104308.

[30]  Brian H. Toby,et al.  EXPGUI, a graphical user interface for GSAS , 2001 .

[31]  M. S. Hegde,et al.  Evidence of ferromagnetic domains in the La 0.67 Ca 0.33 Mn 0.9 Fe 0.1 O 3 perovskite , 2000 .

[32]  Y. Tokura,et al.  Spin state and metal–insulator transition in LaCoO3 and RCoO3 (R=Nd, Sm and Eu) , 2000 .

[33]  H. Fjellvåg,et al.  Electronic structure, phase stability, and magnetic properties of La 1-x Sr x CoO 3 from first-principles full-potential calculations , 1999 .

[34]  Dagotto,et al.  Phase separation scenario for manganese oxides and related materials , 1999, Science.

[35]  J. Goodenough,et al.  Transition from itinerant to polaronic conduction in La1 xSrxCoO3 perovskites , 1999 .

[36]  N. Univ.,et al.  Electronic and magnetic states in doped LaCoO 3 , 1998, cond-mat/9809099.

[37]  Y. Akimune,et al.  Electronic state and valence control of LaCoO3: Difference between La-deficient and Sr-substituting effects , 1997 .

[38]  L. Rao,et al.  Polarised neutron study of amorphous Fe90-xRuxZr10 alloys , 1997 .

[39]  G. Sawatzky,et al.  Intermediate-spin state and properties of LaCoO3. , 1996, Physical review. B, Condensed matter.

[40]  L. Rao,et al.  Magnetic studies in mesoscopic length scale using polarized neutron spectrometer at Dhruva reactor, Trombay , 1996 .

[41]  Kawakami,et al.  Recombination dynamics of localized excitons in a CdSe/ZnSe/ZnSxSe1-x single-quantum-well structure. , 1996, Physical review. B, Condensed matter.

[42]  S. Yusuf,et al.  The magnetic domain effect in the local canted spin ferrite Zn0.5Co0.5Fe2-xCrxO4 : a macroscopic and mesoscopic study , 1995 .

[43]  J. Goodenough,et al.  LaCoO{sub 3} revisited , 1995 .

[44]  T. Sands,et al.  Ferroelectric La‐Sr‐Co‐O/Pb‐Zr‐Ti‐O/La‐Sr‐Co‐O heterostructures on silicon via template growth , 1993 .

[45]  Juan Rodríguez-Carvajal,et al.  Recent advances in magnetic structure determination by neutron powder diffraction , 1993 .

[46]  J. Mydosh Spin glasses : an experimental introduction , 1993 .

[47]  Yoshizawa,et al.  Neutron-depolarization studies on re-entrant spin glass. , 1992, Physical review. B, Condensed matter.

[48]  Y. Endoh,et al.  Neutron Depolarization Studies on Reentrant Spin Glass AuFe Alloy , 1991 .

[49]  Watanabe,et al.  Neutron depolarization in a reentrant spin-glass system: Amorphous Fe-Mn. , 1990, Physical review. B, Condensed matter.

[50]  Lundgren,et al.  Dynamics of an Ising spin-glass in the vicinity of the spin-glass temperature. , 1988, Physical review letters.

[51]  Zhang Jin-bao,et al.  Application of Nanoporous Perovskite La 1- x Ca x CoO 3 in an Al-H 2 O 2 Semi Fuel Cell , 2011 .

[52]  S. Elizabeth,et al.  Observation of Spin-Glass Behavior in La0.85Sr0.15CoO3 Single Crystals , 2011 .