Application of Quasi-Monte Carlo Methods to Elliptic PDEs with Random Diffusion Coefficients: A Survey of Analysis and Implementation

This article provides a survey of recent research efforts on the application of quasi-Monte Carlo (QMC) methods to elliptic partial differential equations (PDEs) with random diffusion coefficients. It considers and contrasts the uniform case versus the lognormal case, single-level algorithms versus multi-level algorithms, first-order QMC rules versus higher-order QMC rules, and deterministic QMC methods versus randomized QMC methods. It gives a summary of the error analysis and proof techniques in a unified view, and provides a practical guide to the software for constructing and generating QMC points tailored to the PDE problems. The analysis for the uniform case can be generalized to cover a range of affine parametric operator equations.

[1]  Raúl Tempone,et al.  Galerkin Finite Element Approximations of Stochastic Elliptic Partial Differential Equations , 2004, SIAM J. Numer. Anal..

[2]  E. Novak,et al.  Tractability of Multivariate Problems , 2008 .

[3]  Albert Cohen,et al.  Breaking the curse of dimensionality in sparse polynomial approximation of parametric PDEs , 2015 .

[4]  Christoph Schwab,et al.  Sparse, adaptive Smolyak algorithms for Bayesian inverse problems , 2012 .

[5]  R. Ghanem,et al.  Stochastic Finite Elements: A Spectral Approach , 1990 .

[6]  S. Joe Construction of Good Rank-1 Lattice Rules Based on the Weighted Star Discrepancy , 2006 .

[7]  Michael B. Giles Multilevel Monte Carlo methods , 2015, Acta Numerica.

[8]  You‐Kuan Zhang Stochastic Methods for Flow in Porous Media: Coping with Uncertainties , 2001 .

[9]  Ian H. Sloan,et al.  Component-by-component construction of good lattice rules , 2002, Math. Comput..

[10]  Frances Y. Kuo,et al.  Multi-level Quasi-Monte Carlo Finite Element Methods for a Class of Elliptic PDEs with Random Coefficients , 2015, Foundations of Computational Mathematics.

[11]  Robert Scheichl,et al.  Finite Element Error Analysis of Elliptic PDEs with Random Coefficients and Its Application to Multilevel Monte Carlo Methods , 2013, SIAM J. Numer. Anal..

[12]  V. Bogachev Gaussian Measures on a , 2022 .

[13]  Dirk Nuyens,et al.  Fast Component-by-Component Construction, a Reprise for Different Kernels , 2006 .

[14]  Josef Dick,et al.  The construction of good extensible rank-1 lattices , 2008, Math. Comput..

[15]  Harald Niederreiter,et al.  Random number generation and Quasi-Monte Carlo methods , 1992, CBMS-NSF regional conference series in applied mathematics.

[16]  F. Pillichshammer,et al.  Digital Nets and Sequences: Nets and sequences , 2010 .

[17]  Fabio Nobile,et al.  A Sparse Grid Stochastic Collocation Method for Partial Differential Equations with Random Input Data , 2008, SIAM J. Numer. Anal..

[18]  Helmut Harbrecht,et al.  Multilevel Accelerated Quadrature for PDEs With Log-Normal Distributed Random Coefficient * , 2013 .

[19]  Frances Y. Kuo,et al.  High-dimensional integration: The quasi-Monte Carlo way*† , 2013, Acta Numerica.

[20]  Christoph Schwab,et al.  REGULARITY AND GENERALIZED POLYNOMIAL CHAOS APPROXIMATION OF PARAMETRIC AND RANDOM SECOND-ORDER HYPERBOLIC PARTIAL DIFFERENTIAL EQUATIONS , 2012 .

[21]  Henryk Wozniakowski,et al.  Finite-order weights imply tractability of multivariate integration , 2004, J. Complex..

[22]  Fred J. Hickernell,et al.  Weighted compound integration rules with higher order convergence for all N , 2012, Numerical Algorithms.

[23]  Grzegorz W. Wasilkowski,et al.  Randomly shifted lattice rules with the optimal rate of convergence for unbounded integrands , 2010, J. Complex..

[24]  C. Schwab,et al.  Sparsity in Bayesian inversion of parametric operator equations , 2013 .

[25]  Josef Dick,et al.  Construction of Interlaced Scrambled Polynomial Lattice Rules of Arbitrary High Order , 2013, Found. Comput. Math..

[26]  Damir Filipović,et al.  Affine Diffusion Processes: Theory and Applications , 2009, 0901.4003.

[27]  Josef Dick On the convergence rate of the component-by-component construction of good lattice rules , 2004, J. Complex..

[28]  Helmut Harbrecht,et al.  Multilevel Accelerated Quadrature for PDEs with Log-Normally Distributed Diffusion Coefficient , 2016, SIAM/ASA J. Uncertain. Quantification.

[29]  Frances Y. Kuo,et al.  Constructing Sobol Sequences with Better Two-Dimensional Projections , 2008, SIAM J. Sci. Comput..

[30]  W. Schachermayer,et al.  Multilevel quasi-Monte Carlo path simulation , 2009 .

[31]  Albert Cohen,et al.  Convergence Rates of Best N-term Galerkin Approximations for a Class of Elliptic sPDEs , 2010, Found. Comput. Math..

[32]  Frances Y. Kuo,et al.  Multilevel Quasi-Monte Carlo methods for lognormal diffusion problems , 2015, Math. Comput..

[33]  R. Freeze A stochastic‐conceptual analysis of one‐dimensional groundwater flow in nonuniform homogeneous media , 1975 .

[34]  C. Schwab,et al.  Sparsity in Bayesian inversion of parametric operator equations , 2014 .

[35]  Dirk Nuyens The construction of good lattice rules and polynomial lattice rules , 2014, Uniform Distribution and Quasi-Monte Carlo Methods.

[36]  Stuart C. Hawkins,et al.  A High Performance Computing and Sensitivity Analysis Algorithm for Stochastic Many-Particle Wave Scattering , 2015, SIAM J. Sci. Comput..

[37]  Helmut Harbrecht,et al.  On Multilevel Quadrature for Elliptic Stochastic Partial Differential Equations , 2012 .

[38]  Julia Charrier,et al.  Strong and Weak Error Estimates for Elliptic Partial Differential Equations with Random Coefficients , 2012, SIAM J. Numer. Anal..

[39]  Frances Y. Kuo,et al.  Multilevel Higher Order QMC Petrov-Galerkin Discretization for Affine Parametric Operator Equations , 2016, SIAM J. Numer. Anal..

[40]  Frances Y. Kuo,et al.  Fast QMC Matrix-Vector Multiplication , 2015, SIAM J. Sci. Comput..

[41]  Elisabeth Ullmann,et al.  Further analysis of multilevel Monte Carlo methods for elliptic PDEs with random coefficients , 2012, Numerische Mathematik.

[42]  Christoph Schwab,et al.  Sparse, adaptive Smolyak quadratures for Bayesian inverse problems , 2013 .

[43]  I. H. SLOAN,et al.  Constructing Randomly Shifted Lattice Rules in Weighted Sobolev Spaces , 2002, SIAM J. Numer. Anal..

[44]  Albert Cohen,et al.  Approximation of high-dimensional parametric PDEs * , 2015, Acta Numerica.

[45]  Michael B. Giles,et al.  Multilevel Monte Carlo Path Simulation , 2008, Oper. Res..

[46]  G. Dagan Solute transport in heterogeneous porous formations , 1984, Journal of Fluid Mechanics.

[47]  Josef Dick,et al.  Higher Order Quasi-Monte Carlo Integration for Holomorphic, Parametric Operator Equations , 2014, SIAM/ASA J. Uncertain. Quantification.

[48]  Josef Dick,et al.  Construction algorithms for higher order polynomial lattice rules , 2011, J. Complex..

[49]  HELMUT HARBRECHT,et al.  On the quasi-Monte Carlo method with Halton points for elliptic PDEs with log-normal diffusion , 2016, Math. Comput..

[50]  Angela Kunoth,et al.  Analytic Regularity and GPC Approximation for Control Problems Constrained by Linear Parametric Elliptic and Parabolic PDEs , 2013, SIAM J. Control. Optim..

[51]  Takashi Goda,et al.  Good interlaced polynomial lattice rules for numerical integration in weighted Walsh spaces , 2013, J. Comput. Appl. Math..

[52]  K. A. Cliffe,et al.  Multilevel Monte Carlo methods and applications to elliptic PDEs with random coefficients , 2011, Comput. Vis. Sci..

[53]  Michel Loève,et al.  Probability Theory I , 1977 .

[54]  Christoph Schwab,et al.  Convergence rates for sparse chaos approximations of elliptic problems with stochastic coefficients , 2007 .

[55]  Andrea Barth,et al.  Multi-level Monte Carlo Finite Element method for elliptic PDEs with stochastic coefficients , 2011, Numerische Mathematik.

[56]  Victor Nistor,et al.  High order Galerkin appoximations for parametric second order elliptic partial differential equations , 2012 .

[57]  Dirk Nuyens,et al.  Fast component-by-component construction of rank-1 lattice rules with a non-prime number of points , 2006, J. Complex..

[58]  Dirk Nuyens,et al.  Efficient calculation of the worst-case error and (fast) component-by-component construction of higher order polynomial lattice rules , 2011, Numerical Algorithms.

[59]  Josef Dick,et al.  Walsh Spaces Containing Smooth Functions and Quasi-Monte Carlo Rules of Arbitrary High Order , 2008, SIAM J. Numer. Anal..

[60]  F. Pillichshammer,et al.  Digital Nets and Sequences: Discrepancy Theory and Quasi-Monte Carlo Integration , 2010 .

[61]  I. Sloan,et al.  QUASI-MONTE CARLO METHODS FOR HIGH-DIMENSIONAL INTEGRATION: THE STANDARD (WEIGHTED HILBERT SPACE) SETTING AND BEYOND , 2011, The ANZIAM Journal.

[62]  E. Novak,et al.  Tractability of Multivariate Problems Volume II: Standard Information for Functionals , 2010 .

[63]  Hans-Joachim Bungartz,et al.  Acta Numerica 2004: Sparse grids , 2004 .

[64]  J. Dick THE DECAY OF THE WALSH COEFFICIENTS OF SMOOTH FUNCTIONS , 2009, Bulletin of the Australian Mathematical Society.

[65]  D. Xiu,et al.  Modeling uncertainty in flow simulations via generalized polynomial chaos , 2003 .

[66]  C. R. Dietrich,et al.  Fast and Exact Simulation of Stationary Gaussian Processes through Circulant Embedding of the Covariance Matrix , 1997, SIAM J. Sci. Comput..

[67]  Josef Dick,et al.  QMC Rules of Arbitrary High Order: Reproducing Kernel Hilbert Space Approach , 2009 .

[68]  I. Sloan Lattice Methods for Multiple Integration , 1994 .

[69]  Josef Dick,et al.  Multivariate integration in weighted Hilbert spaces based on Walsh functions and weighted Sobolev spaces , 2005, J. Complex..

[70]  Takehito Yoshiki,et al.  Bounds on Walsh coefficients by dyadic difference and a new Koksma-Hlawka type inequality for Quasi-Monte Carlo integration , 2015, 1504.03175.

[71]  Quoc Thong Le Gia,et al.  A QMC-Spectral Method for Elliptic PDEs with Random Coefficients on the Unit Sphere , 2013 .

[72]  Peter K. Kitanidis,et al.  Analysis of the Spatial Structure of Properties of Selected Aquifers , 1985 .

[73]  E. Novak,et al.  Tractability of Multivariate Problems, Volume III: Standard Information for Operators. , 2012 .

[74]  Christoph Schwab,et al.  QMC Galerkin Discretization of Parametric Operator Equations , 2013 .

[75]  Claude Jeffrey Gittelson,et al.  Sparse tensor discretizations of high-dimensional parametric and stochastic PDEs* , 2011, Acta Numerica.

[76]  Christoph Schwab,et al.  Karhunen-Loève approximation of random fields by generalized fast multipole methods , 2006, J. Comput. Phys..

[77]  Andrew M. Stuart,et al.  Complexity analysis of accelerated MCMC methods for Bayesian inversion , 2012, 1207.2411.

[78]  Joseph F. Traub,et al.  Faster Valuation of Financial Derivatives , 1995 .

[79]  F. J. Hickernell Obtaining O( N - 2+∈ ) Convergence for Lattice Quadrature Rules , 2002 .

[80]  Frances Y. Kuo,et al.  Higher Order QMC Petrov-Galerkin Discretization for Affine Parametric Operator Equations with Random Field Inputs , 2014, SIAM J. Numer. Anal..

[81]  Fabio Nobile,et al.  An Anisotropic Sparse Grid Stochastic Collocation Method for Partial Differential Equations with Random Input Data , 2008, SIAM J. Numer. Anal..

[82]  Henryk Wozniakowski,et al.  Liberating the weights , 2004, J. Complex..

[83]  Frances Y. Kuo,et al.  Quasi-Monte Carlo methods for elliptic PDEs with random coefficients and applications , 2011, J. Comput. Phys..

[84]  Frances Y. Kuo,et al.  Constructing Embedded Lattice Rules for Multivariate Integration , 2006, SIAM J. Sci. Comput..

[85]  Fabio Nobile,et al.  Multi-index Monte Carlo: when sparsity meets sampling , 2014, Numerische Mathematik.

[86]  Frances Y. Kuo,et al.  Construction algorithms for polynomial lattice rules for multivariate integration , 2005, Math. Comput..

[87]  Henryk Wozniakowski,et al.  When Are Quasi-Monte Carlo Algorithms Efficient for High Dimensional Integrals? , 1998, J. Complex..

[88]  Stefan Heinrich,et al.  Monte Carlo Complexity of Global Solution of Integral Equations , 1998, J. Complex..

[89]  BabuskaIvo,et al.  A Stochastic Collocation Method for Elliptic Partial Differential Equations with Random Input Data , 2007 .

[90]  R. L. Naff,et al.  High‐resolution Monte Carlo simulation of flow and conservative transport in heterogeneous porous media: 2. Transport results , 1998 .

[91]  James A. Nichols,et al.  Fast CBC construction of randomly shifted lattice rules achieving O(n-1+δ) convergence for unbounded integrands over R5 in weighted spaces with POD weights , 2014, J. Complex..

[92]  M. Giles Improved Multilevel Monte Carlo Convergence using the Milstein Scheme , 2008 .

[93]  Frances Y. Kuo,et al.  Multi-level quasi-Monte Carlo finite element methods for a class of elliptic partial differential equations with random coefficients , 2012, 1208.6349.

[94]  R. L. Naff,et al.  High‐resolution Monte Carlo simulation of flow and conservative transport in heterogeneous porous media: 1. Methodology and flow results , 1998 .

[95]  Fabio Nobile,et al.  A Stochastic Collocation Method for Elliptic Partial Differential Equations with Random Input Data , 2007, SIAM Rev..

[96]  Dongxiao Zhang,et al.  A Comparative Study on Uncertainty Quantification for Flow in Randomly Heterogeneous Media Using Monte Carlo Simulations and Conventional and KL-Based Moment-Equation Approaches , 2005, SIAM J. Sci. Comput..

[97]  Frances Y. Kuo,et al.  Component-by-component constructions achieve the optimal rate of convergence for multivariate integration in weighted Korobov and Sobolev spaces , 2003, J. Complex..

[98]  Xiaoqun Wang,et al.  Strong tractability of multivariate integration using quasi-Monte Carlo algorithms , 2003, Math. Comput..

[99]  Takashi Goda,et al.  Digital nets with infinite digit expansions and construction of folded digital nets for quasi-Monte Carlo integration , 2014, J. Complex..

[100]  Guannan Zhang,et al.  Stochastic finite element methods for partial differential equations with random input data* , 2014, Acta Numerica.

[101]  Josef Dick,et al.  Explicit Constructions of Quasi-Monte Carlo Rules for the Numerical Integration of High-Dimensional Periodic Functions , 2007, SIAM J. Numer. Anal..

[102]  Victor Nistor,et al.  HIGH-ORDER GALERKIN APPROXIMATIONS FOR PARAMETRIC SECOND-ORDER ELLIPTIC PARTIAL DIFFERENTIAL EQUATIONS , 2013 .

[103]  Dirk Nuyens,et al.  A practical multi-index quasi-Monte Carlo method for simulating elliptic PDEs with random coefficients , 2015 .

[104]  Christoph Schwab,et al.  ANALYTIC REGULARITY AND POLYNOMIAL APPROXIMATION OF STOCHASTIC, PARAMETRIC ELLIPTIC MULTISCALE PDEs , 2013 .

[105]  Pol D. Spanos,et al.  Spectral Stochastic Finite-Element Formulation for Reliability Analysis , 1991 .

[106]  D. Hunter Valuation of mortgage-backed securities using Brownian bridges to reduce effective dimension , 2000 .

[107]  Max Gunzburger,et al.  A Multilevel Stochastic Collocation Method for Partial Differential Equations with Random Input Data , 2014, SIAM/ASA J. Uncertain. Quantification.

[108]  Dirk Nuyens,et al.  Fast algorithms for component-by-component construction of rank-1 lattice rules in shift-invariant reproducing kernel Hilbert spaces , 2006, Math. Comput..

[109]  H. Bungartz,et al.  Sparse grids , 2004, Acta Numerica.

[110]  Andrew M. Stuart,et al.  Sparse MCMC gpc finite element methods for Bayesian inverse problems , 2012 .

[111]  R. Tempone,et al.  A continuation multilevel Monte Carlo algorithm , 2014, BIT Numerical Mathematics.

[112]  Dirk Nuyens,et al.  Faster component-by-component construction , 2004 .

[113]  James A. Nichols,et al.  Quasi-Monte Carlo finite element methods for elliptic PDEs with lognormal random coefficients , 2015, Numerische Mathematik.

[114]  Dirk Nuyens,et al.  Lattice rules for nonperiodic smooth integrands , 2014, Numerische Mathematik.

[115]  Y. Rubin Applied Stochastic Hydrogeology , 2003 .