Symmetry of matrix-valued stochastic processes and noncolliding diffusion particle systems

As an extension of the theory of Dyson’s Brownian motion models for the standard Gaussian random-matrix ensembles, we report a systematic study of Hermitian matrix-valued processes and their eigenvalue processes associated with the chiral and nonstandard random-matrix ensembles. In addition to the noncolliding Brownian motions, we introduce a one-parameter family of temporally homogeneous noncolliding systems of the Bessel processes and a two-parameter family of temporally inhomogeneous noncolliding systems of Yor’s generalized meanders and show that all of the ten classes of eigenvalue statistics in the Altland–Zirnbauer classification are realized as particle distributions in the special cases of these diffusion particle systems. As a corollary of each equivalence in distribution of a temporally inhomogeneous eigenvalue process and a noncolliding diffusion process, a stochastic-calculus proof of a version of the Harish–Chandra (Itzykson–Zuber) formula of integral over unitary group is established.

[1]  T. Nagao Correlation functions for multi-matrix models and quaternion determinants , 2001 .

[2]  A. Borodin,et al.  Handbook of Brownian Motion - Facts and Formulae , 1996 .

[3]  A. Edelman The Probability that a Random Real Gaussian Matrix haskReal Eigenvalues, Related Distributions, and the Circular Law , 1997 .

[4]  Verbaarschot,et al.  Spectral density of the QCD Dirac operator near zero virtuality. , 1993, Physical Review Letters.

[5]  David J. Grabiner Brownian Motion in a Weyl Chamber, Non-Colliding Particles, and Random Matrices , 1997, math/9708207.

[6]  Infinite systems of non-colliding Brownian particles , 2003, math/0301143.

[7]  Scaling limit of vicious walks and two-matrix model. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[8]  Dynamical correlations among vicious random walkers , 2002, cond-mat/0202068.

[9]  M. Yor Some Aspects Of Brownian Motion , 1992 .

[10]  A. Balantekin Character expansions, Itzykson-Zuber integrals, and the QCD partition function , 2000, hep-th/0007161.

[11]  松浦 省三 On the theory of functions of several complex variables , 1961 .

[12]  M. Stephanov,et al.  Random Matrices , 2005, hep-ph/0509286.

[13]  C. Itzykson,et al.  The planar approximation. II , 1980 .

[14]  Nonstandard symmetry classes in mesoscopic normal-superconducting hybrid structures , 1996, cond-mat/9602137.

[15]  Fluctuations of the One-Dimensional Polynuclear Growth Model in Half-Space , 2003, cond-mat/0307011.

[16]  J. Ginibre Statistical Ensembles of Complex, Quaternion, and Real Matrices , 1965 .

[17]  A. D. Jackson,et al.  Finite volume partition functions and Itzykson-Zuber integrals , 1996 .

[18]  Neil O'Connell,et al.  Eigenvalues of the Laguerre Process as Non-Colliding Squared Bessel Processes , 2001 .

[19]  N. Rescher The Threefold Way , 1987 .

[20]  Stoke Giord,et al.  EIGENVALUES OF THE LAGUERRE PROCESS AS NON-COLLIDING SQUARED BESSEL PROCESSES , 2001 .

[21]  M. L. Mehta,et al.  Gaussian ensembles of random hermitian matrices intermediate between orthogonal and unitary ones , 1983 .

[22]  S. Helgason Differential Geometry, Lie Groups, and Symmetric Spaces , 1978 .

[23]  I. G. MacDonald,et al.  Some Conjectures for Root Systems , 1982 .

[24]  T. Nagao,et al.  Vicious walks with a wall, noncolliding meanders, and chiral and Bogoliubov-de Gennes random matrices. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[25]  Riemannian symmetric superspaces and their origin in random‐matrix theory , 1996, math-ph/9808012.

[26]  F. Dyson A Brownian‐Motion Model for the Eigenvalues of a Random Matrix , 1962 .

[27]  K. Efetov,et al.  Supersymmetry in Disorder and Chaos , 1996 .

[28]  A. B. Balantekin Ju l 2 00 0 Character Expansions , Itykzon-Zuber Integrals , and the QCD Partition Function , 2000 .

[29]  Harish-Chandra Differential Operators on a Semisimple Lie Algebra , 1957 .

[30]  Freeman J. Dyson,et al.  The Threefold Way. Algebraic Structure of Symmetry Groups and Ensembles in Quantum Mechanics , 1962 .

[31]  Dynamical correlations for vicious random walk with a wall , 2003, cond-mat/0301547.

[32]  A. B. Balantekin,et al.  Character expansions for the orthogonal and symplectic groups , 2002 .

[33]  David Williams,et al.  Brownian motions of ellipsoids , 1986 .

[34]  C. Itzykson The planar approximation , 1980 .

[35]  M. Katori,et al.  Functional central limit theorems for vicious walkers , 2002, math/0203286.

[36]  Marie-France Bru,et al.  Wishart processes , 1991 .

[37]  Marie-France Bru,et al.  Diffusions of perturbed principal component analysis , 1989 .

[38]  R. Gilmore,et al.  Lie Groups, Lie Algebras, and Some of Their Applications , 1974 .

[39]  P. Forrester,et al.  Quaternion determinant expressions for multilevel dynamical correlation functions of parametric random matrices , 1999 .

[40]  Michael E. Fisher,et al.  Walks, walls, wetting, and melting , 1984 .

[41]  I. G. MacDonald,et al.  Symmetric functions and Hall polynomials , 1979 .

[42]  J. Verbaarschot The spectrum of the Dirac operator near zero virtuality for Nc = 2 and chiral random matrix theory , 1994 .

[43]  T. Nagao,et al.  Vicious walk with a wall, non-colliding meanders, chiral and Bogoliubov-deGennes random matrices , 2003 .

[44]  R. Carter Lie Groups , 1970, Nature.

[45]  W. Fulton Young Tableaux: With Applications to Representation Theory and Geometry , 1996 .

[46]  J. Imhof,et al.  Density factorizations for brownian motion, meander and the three-dimensional bessel process, and applications , 1984, Journal of Applied Probability.

[47]  Anthony J. Guttmann,et al.  Vicious walkers, friendly walkers and Young tableaux: II. With a wall , 2000 .

[48]  Random matrix theory of a chaotic Andreev quantum dot. , 1995, Physical review letters.

[49]  Samuel Karlin,et al.  COINCIDENT PROPERTIES OF BIRTH AND DEATH PROCESSES , 1959 .

[50]  Joe Harris,et al.  Representation Theory: A First Course , 1991 .

[51]  M. L. Mehta,et al.  On some Gaussian ensembles of Hermitian matrices , 1983 .

[52]  M. Brelot Classical potential theory and its probabilistic counterpart , 1986 .

[53]  Noncolliding Brownian motions and Harish-Chandra formula , 2003, math/0306386.

[54]  P. G. de Gennes,et al.  Soluble Model for Fibrous Structures with Steric Constraints , 1968 .

[55]  M. L. Mehta,et al.  Spacing distributions for some Gaussian ensembles of Hermitian matrices , 1983 .

[56]  M. Yor,et al.  Continuous martingales and Brownian motion , 1990 .

[57]  Marc Yor,et al.  Some aspects of Brownian motion: part i: some special functionals , 1992 .

[58]  Correlations for the orthogonal-unitary and symplectic-unitary transitions at the hard and soft edges , 1998, cond-mat/9811142.

[59]  Essam,et al.  Vicious walkers and directed polymer networks in general dimensions. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.