DETECTION OF FAR-INFRARED AND POLYCYCLIC AROMATIC HYDROCARBON EMISSION FROM THE COSMIC EYE: PROBING THE DUST AND STAR FORMATION OF LYMAN BREAK GALAXIES

We report the results of a Spitzer infrared (IR) study of the Cosmic Eye, a strongly lensed, L*UV Lyman break galaxy (LBG) at z = 3.074. We obtained Spitzer mid-IR spectroscopy as well as MIPS 24 and 70 μm photometry. The Eye is detected with high significance at both 24 and 70 μm and, when including a flux limit at 3.5 mm, we estimate an IR luminosity of LIR = 8.3+4.7−4.4 ×  1011 L☉ assuming a magnification of 28± 3. This LIR is eight times lower than that predicted from the rest-frame ultraviolet properties assuming a Calzetti reddening law. This has also been observed in other young LBGs, and indicates that the dust reddening law may be steeper in these galaxies. The mid-IR spectrum shows strong polycyclic aromatic hydrocarbon (PAH) emission at 6.2 and 7.7 μm, with equivalent widths near the maximum values observed in star-forming galaxies at any redshift. The LPAH-to-LIR ratio lies close to the relation measured in local starbursts. Therefore, LPAH or LMIR may be used to estimate LIR, and thus star formation rate, of LBGs, whose fluxes at longer wavelengths are typically below current confusion limits. We also report the highest redshift detection of the 3.3 μm PAH emission feature. The PAH ratio, L6.2/L3.3 = 5.1 ± 2.7, and the PAH-to-LIR ratio, L3.3/LIR = 8.5 ± 4.7 × 10−4, are both in agreement with measurements in local starbursts and ultraluminous infrared galaxies (ULIRGs), suggesting that this line may serve as a good proxy for LPAH or LIR at z > 3 with the James Webb Space Telescope.

[1]  W. Keel,et al.  AN EXTENDED DUST DISK IN A SPIRAL GALAXY: AN OCCULTING GALAXY PAIR IN THE ACS NEARBY GALAXY SURVEY TREASURY , 2009 .

[2]  C. Steidel,et al.  A STEEP FAINT-END SLOPE OF THE UV LUMINOSITY FUNCTION AT z ∼ 2–3: IMPLICATIONS FOR THE GLOBAL STELLAR MASS DENSITY AND STAR FORMATION IN LOW-MASS HALOS , 2008, 0810.2788.

[3]  R. Chary,et al.  Spitzer Observations of the z = 2.73 Lensed Lyman Break Galaxy: MS 1512–cB58 , 2008, 0808.2465.

[4]  C. Carilli,et al.  Star Formation Rates in Lyman Break Galaxies: Radio Stacking of LBGs in the COSMOS Field and the Sub-μJy Radio Source Population , 2008, 0808.2391.

[5]  Alexander G. G. M. Tielens,et al.  Interstellar Polycyclic Aromatic Hydrocarbon Molecules , 2008 .

[6]  Takashi Onaka,et al.  Systematic Infrared 2.5—5μm Spectroscopy of Nearby Ultraluminous Infrared Galaxies with AKARI , 2008, 0808.0363.

[7]  D. Elbaz,et al.  IRAC Excess in Distant Star-Forming Galaxies: Tentative Evidence for the 3.3 μm Polycyclic Aromatic Hydrocarbon Feature? , 2008, 0803.3917.

[8]  C. Papovich,et al.  Mid-Infrared Spectroscopy of Lensed Galaxies at 1 < z < 3: The Nature of Sources Near the MIPS Confusion Limit , 2007, 0711.1902.

[9]  D. Elbaz,et al.  Mid-Infrared Spectral Diagnosis of Submillimeter Galaxies , 2007, 0711.1553.

[10]  J. Bernard-Salas,et al.  PAH Emission from Ultraluminous Infrared Galaxies , 2007, 0707.4190.

[11]  Sergey E. Koposov,et al.  The Cosmic Horseshoe: Discovery of an Einstein Ring around a Giant Luminous Red Galaxy , 2007, 0706.2326.

[12]  A. M. Swinbank,et al.  A Detailed Study of Gas and Star Formation in a Highly Magnified Lyman Break Galaxy at z = 3.07 , 2007, 0705.1721.

[13]  A. M. Swinbank,et al.  Separation of the visible and dark matter in the Einstein ring LBG J213512.73−010143 , 2007, 0705.1720.

[14]  Oar,et al.  Dust Properties at z = 6.3 in the Host Galaxy of GRB 050904 , 2007, astro-ph/0703349.

[15]  Takao Nakagawa,et al.  A Spitzer IRS Low-Resolution Spectroscopic Search for Buried AGNs in Nearby Ultraluminous Infrared Galaxies: A Constraint on Geometry between Energy Sources and Dust , 2007, astro-ph/0702136.

[16]  A. Pope,et al.  Measuring PAH Emission in Ultradeep Spitzer IRS Spectroscopy of High-Redshift IR-Luminous Galaxies , 2007, astro-ph/0701409.

[17]  J. Surace,et al.  Spitzer Mid-Infrared Spectroscopy of Infrared Luminous Galaxies at z ~ 2. I. The Spectra , 2006, astro-ph/0612297.

[18]  J. Frieman,et al.  The 8 O’Clock Arc: A Serendipitous Discovery of a Strongly Lensed Lyman Break Galaxy in the SDSS DR4 Imaging Data , 2006, astro-ph/0611138.

[19]  B. Draine,et al.  Infrared Emission from Interstellar Dust. IV. The Silicate-Graphite-PAH Model in the Post-Spitzer Era , 2006, astro-ph/0608003.

[20]  J. Bernard-Salas,et al.  The Mid-Infrared Properties of Starburst Galaxies from Spitzer-IRS Spectroscopy , 2006 .

[21]  A. M. Swinbank,et al.  A Very Bright, Highly Magnified Lyman Break Galaxy at z = 3.07 , 2006, astro-ph/0611486.

[22]  J. Bernard-Salas,et al.  The Mid-IR Properties of Starburst Galaxies from Spitzer-IRS Spectroscopy , 2006, astro-ph/0609024.

[23]  D. Calzetti,et al.  The Spectral Energy Distribution of Dust Emission in the Edge-on Spiral Galaxy NGC 4631 as Seen with Spitzer and the James Clerk Maxwell Telescope , 2006, astro-ph/0607669.

[24]  D. Elbaz,et al.  Spitzer 70 Micron Source Counts in GOODS-North , 2006, astro-ph/0606676.

[25]  C. Steidel,et al.  Hα Observations of a Large Sample of Galaxies at z ~ 2: Implications for Star Formation in High-Redshift Galaxies , 2006, astro-ph/0604388.

[26]  D. Calzetti,et al.  Extended Mid-Infrared Aromatic Feature Emission in M82 , 2006, astro-ph/0603551.

[27]  D. Calzetti,et al.  Spitzer and JCMT Observations of the Active Galactic Nucleus in the Sombrero Galaxy (NGC 4594) , 2006, astro-ph/0603160.

[28]  Dario Fadda,et al.  Star Formation and Extinction in Redshift z~2 Galaxies: Inferences from Spitzer MIPS Observations , 2006, astro-ph/0602596.

[29]  R. Maiolino,et al.  Unveiling the nature of Ultraluminous Infrared Galaxies with 3–4 μm spectroscopy , 2005, astro-ph/0510282.

[30]  Nrl,et al.  Infrared 3-4 μm Spectroscopic Investigations of a Large Sample of Nearby Ultraluminous Infrared Galaxies , 2005, astro-ph/0509861.

[31]  T. Thuan,et al.  Oxygen Abundance Determination in H II Regions: The Strong Line Intensities-Abundance Calibration Revisited , 2005 .

[32]  L. Kewley,et al.  Star Formation in NGC 5194 (M51a): The Panchromatic View from GALEX to Spitzer , 2005, astro-ph/0507427.

[33]  B. Madore,et al.  Discovery of an Extended Ultraviolet Disk in the Nearby Galaxy NGC 4625 , 2005, astro-ph/0506357.

[34]  I. Smail,et al.  A Redshift Survey of the Submillimeter Galaxy Population , 2004, astro-ph/0412573.

[35]  A. Szalay,et al.  Recent Star Formation in the Extreme Outer Disk of M83 , 2004, astro-ph/0411306.

[36]  F. Marleau,et al.  Point‐Source Extraction with MOPEX , 2004, astro-ph/0507007.

[37]  E. Oliva,et al.  A supernova origin for dust in a high-redshift quasar , 2004, Nature.

[38]  C. Steidel,et al.  X-Ray and Radio Emission from Ultraviolet-selected Star-forming Galaxies at Redshifts 1.5 ≲ z ≲ 3.0 in the GOODS-North Field , 2004, astro-ph/0401432.

[39]  M. Pettini,et al.  [O III] / [N II] as an abundance indicator at high redshift , 2004, astro-ph/0401128.

[40]  E. Bell Dust-induced Systematic Errors in Ultraviolet-derived Star Formation Rates , 2002, astro-ph/0207397.

[41]  Daniela Calzetti,et al.  Far-Infrared Galaxies in the Far-Ultraviolet , 2001, astro-ph/0112352.

[42]  M. Imanishi 3-4 Micron Spectroscopy of Seyfert 2 Nuclei to Quantitatively Assess the Energetic Importance of Compact Nuclear Starbursts , 2001, astro-ph/0112299.

[43]  M. Giavalisco,et al.  The Rest-Frame Optical Properties of z ≃ 3 Galaxies , 2001, astro-ph/0107324.

[44]  D. Elbaz,et al.  Interpreting the Cosmic Infrared Background: Constraints on the Evolution of the Dust-enshrouded Star Formation Rate , 2001, astro-ph/0103067.

[45]  P. Ferrara Dust Formation in Primordial Type II Supernovae , 2000, astro-ph/0009176.

[46]  H. Ferguson,et al.  The Stellar Populations and Evolution of Lyman Break Galaxies , 2000, astro-ph/0105087.

[47]  M. Imanishi,et al.  Energy Diagnoses of Nine Infrared Luminous Galaxies Based on 3-4 Micron Spectra , 2000, astro-ph/0008092.

[48]  J. Graham,et al.  The Rest-Frame Optical Spectrum of MS 1512–cB58 , 2000, The Astrophysical journal.

[49]  C. C. Steidel,et al.  Multiwavelength Observations of Dusty Star Formation at Low and High Redshift , 2000, astro-ph/0001126.

[50]  A. Kinney,et al.  The Dust Content and Opacity of Actively Star-forming Galaxies , 1999, astro-ph/9911459.

[51]  M. Halpern,et al.  A Search for the submillimetre counterparts to Lyman break galaxies , 1999, astro-ph/9909092.

[52]  M. Giavalisco,et al.  The Ultraviolet Spectrum of MS 1512–cB58: An Insight into Lyman-Break Galaxies , 1999, astro-ph/9908007.

[53]  Timothy M. Heckman,et al.  Dust Absorption and the Ultraviolet Luminosity Density at z ≈ 3 as Calibrated by Local Starburst Galaxies , 1999, astro-ph/9903054.

[54]  Jr.,et al.  STAR FORMATION IN GALAXIES ALONG THE HUBBLE SEQUENCE , 1998, astro-ph/9807187.

[55]  D. Calzetti Reddening and star formation in starburst galaxies , 1996, astro-ph/9610184.

[56]  E. Ellingson,et al.  Optical-IR Spectral Energy Distribution of the Protogalaxy Candidate MS 1512–cB58 , 1996, astro-ph/9605159.

[57]  M. Giavalisco,et al.  Spectroscopic Confirmation of a Population of Normal Star-forming Galaxies at Redshifts z > 3 , 1996, astro-ph/9602024.

[58]  A. Kinney,et al.  Dust extinction of the stellar continua in starburst galaxies: The Ultraviolet and optical extinction law , 1994 .

[59]  W. Latter Large Molecule Production by Mass-losing Carbon Stars: The Primary Source of Interstellar Polycyclic Aromatic Hydrocarbons? , 1991 .

[60]  Y. Taniguchi,et al.  A relation between H2 v=1−0 S(1) and 3.28 micron emission in Seyfert and starburst galaxies , 1990 .

[61]  D. G. Hummer,et al.  Recombination-line intensities for hydrogenic ions. I - Case B calculations for H I and He II. [in astronomical objects , 1987 .

[62]  Edward L. Fitzpatrick,et al.  An average interstellar extinction curve for the Large Magellanic Cloud. , 1986 .